使用增强型 (RFM)、CLV、修正回归和聚类方法的新市场细分方法-研究论文

上传者: 38614112 | 上传时间: 2023-10-16 11:19:14 | 文件大小: 323KB | 文件类型: PDF
深入了解消费者购买行为异质性的一种广泛使用的方法是市场细分。 传统的市场细分模型常常忽略消费者行为可能随时间演变的事实。 因此,零售商消耗有限的资源试图为无利可图的消费者提供服务。 本研究调查了科威特国一家中型零售商的增强新近度、频率、货币 (RFM) 分数和消费者终身价值 (CLV) 矩阵之间的整合。 修改后的回归算法调查消费者购买趋势,从销售点数据仓库中获取知识。 此外,本研究应用增强正态分布公式去除异常值,然后采用软聚类模糊 C 均值和硬聚类期望最大化 (EM) 算法对消费者购买行为进行分析。 使用集群质量评估表明,EM 算法的扩展性比模糊 C 均值算法好得多,因为它能够在较小的数据集中分配良好的初始点

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明