smote的matlab代码-Class-Imbalance:处理机器学习中的类不平衡问题。合成过采样(SMOTE,ADASYN)

上传者: 38612568 | 上传时间: 2021-12-11 00:04:28 | 文件大小: 155KB | 文件类型: -
smote的matlab代码不平衡数据问题 在机器学习中,我们经常会遇到不平衡的数据。 例如,在银行的信用数据中,97% 的客户可以按时还款,而只有 3% 的客户不能。 如果我们忽略 3% 无法按时付款的客户,模型的准确率可能仍然很高,但可能会给银行带来巨大的损失。 因此,我们需要适当的方法来平衡数据。 许多研究论文提供了许多技术,包括过采样和欠采样,以处理数据不平衡。 该存储库实现了其中一些技术。 要求 sklearn numpy SMOTE SMOTE 是 NV Chawla、KW Bowyer、LO Hall 和 WP Kegelmeyer 的论文中提到的一种合成少数过采样技术 Parameters ---------- sample 2D (numpy)array minority class samples N Integer amount of SMOTE N% k Integer number of nearest neighbors k k <= number of minority class samples Attributes ---------- newInde

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明