matlab案例有代码-SelfDeblur:使用深度先验的神经盲反卷积(CVPR2020)

上传者: 38611877 | 上传时间: 2022-04-12 10:45:37 | 文件大小: 2.82MB | 文件类型: ZIP
matlab案例有代码 [] [] 介绍 盲反卷积是许多实际应用中的经典但具有挑战性的低级视觉问题。 传统的基于最大后验(MAP)的方法在很大程度上依赖于固定的和手工制作的先验,这肯定不足以表征清晰的图像和模糊内核,并且通常采用特殊设计的交替最小化来避免琐碎的解决方案。 相反,现有的深度运动去模糊网络从大量训练图像中学习到映射到干净图像或模糊内核,但是在处理各种复杂和大尺寸模糊内核方面受到限制。 基于深度图像先验(DIP)[1]的动机,我们在本文中提出了两个生成网络,分别用于对清洁图像和模糊核的深度先验进行建模,并提出了一种针对盲反卷积的无约束神经优化解决方案(SelfDeblur)。 实验结果表明,与基准数据集和真实世界的模糊图像上的最新盲去卷积方法相比,我们的SelfDeblur可以实现显着的量化增益,并且在视觉上似乎更合理。 先决条件 Python 3.6,PyTorch> = 0.4 要求:opencv-python,tqdm 平台:Ubuntu 16.04,TITAN V,cuda-10.0&cuDNN v-7.5 用于计算的MATLAB 数据集 SelfLeblur在Lev

文件下载

资源详情

[{"title":"( 88 个子文件 2.82MB ) matlab案例有代码-SelfDeblur:使用深度先验的神经盲反卷积(CVPR2020)","children":[{"title":"SelfDeblur-master","children":[{"title":"results","children":[{"title":"demo","children":[{"title":"lai.jpg <span style='color:#111;'> 718.53KB </span>","children":null,"spread":false},{"title":"levin.png <span style='color:#111;'> 892.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"levin","children":[{"title":"readme.docx <span style='color:#111;'> 28.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"lai","children":[{"title":"readme.docx <span style='color:#111;'> 35.94KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"datasets","children":[{"title":"real","children":[{"title":"house.jpg <span style='color:#111;'> 67.48KB </span>","children":null,"spread":false},{"title":"flower.jpg <span style='color:#111;'> 43.12KB </span>","children":null,"spread":false},{"title":"fishes.jpg <span style='color:#111;'> 52.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"readme.docx <span style='color:#111;'> 20.52KB </span>","children":null,"spread":false},{"title":"levin","children":[{"title":"im1_kernel2_img.png <span style='color:#111;'> 28.35KB </span>","children":null,"spread":false},{"title":"im4_kernel4_img.png <span style='color:#111;'> 24.88KB </span>","children":null,"spread":false},{"title":"im2_kernel1_img.png <span style='color:#111;'> 28.58KB </span>","children":null,"spread":false},{"title":"im1_kernel1_img.png <span style='color:#111;'> 28.57KB </span>","children":null,"spread":false},{"title":"im1_kernel6_img.png <span style='color:#111;'> 28.90KB </span>","children":null,"spread":false},{"title":"im2_kernel4_img.png <span style='color:#111;'> 26.97KB </span>","children":null,"spread":false},{"title":"im3_kernel1_img.png <span style='color:#111;'> 29.27KB </span>","children":null,"spread":false},{"title":"im3_kernel8_img.png <span style='color:#111;'> 28.80KB </span>","children":null,"spread":false},{"title":"im1_kernel4_img.png <span style='color:#111;'> 27.36KB </span>","children":null,"spread":false},{"title":"im1_kernel5_img.png <span style='color:#111;'> 28.86KB </span>","children":null,"spread":false},{"title":"im2_kernel3_img.png <span style='color:#111;'> 28.10KB </span>","children":null,"spread":false},{"title":"im4_kernel1_img.png <span style='color:#111;'> 26.25KB </span>","children":null,"spread":false},{"title":"im3_kernel7_img.png <span style='color:#111;'> 28.87KB </span>","children":null,"spread":false},{"title":"im3_kernel6_img.png <span style='color:#111;'> 29.73KB </span>","children":null,"spread":false},{"title":"im4_kernel5_img.png <span style='color:#111;'> 27.27KB </span>","children":null,"spread":false},{"title":"im4_kernel2_img.png <span style='color:#111;'> 25.86KB </span>","children":null,"spread":false},{"title":"im4_kernel7_img.png <span style='color:#111;'> 25.75KB </span>","children":null,"spread":false},{"title":"gt","children":[{"title":"im4.png <span style='color:#111;'> 33.05KB </span>","children":null,"spread":false},{"title":"kernel5.png <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"kernel1.png <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"kernel4.png <span style='color:#111;'> 327B </span>","children":null,"spread":false},{"title":"kernel7.png <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"im3.png <span style='color:#111;'> 34.18KB </span>","children":null,"spread":false},{"title":"im2.png <span style='color:#111;'> 35.86KB </span>","children":null,"spread":false},{"title":"kernel6.png <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"kernel2.png <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"im1.png <span style='color:#111;'> 34.23KB </span>","children":null,"spread":false},{"title":"kernel3.png <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"kernel8.png <span style='color:#111;'> 325B </span>","children":null,"spread":false}],"spread":false},{"title":"im1_kernel7_img.png <span style='color:#111;'> 28.14KB </span>","children":null,"spread":false},{"title":"im1_kernel8_img.png <span style='color:#111;'> 28.30KB </span>","children":null,"spread":false},{"title":"im2_kernel7_img.png <span style='color:#111;'> 28.00KB </span>","children":null,"spread":false},{"title":"im2_kernel2_img.png <span style='color:#111;'> 28.38KB </span>","children":null,"spread":false},{"title":"im4_kernel8_img.png <span style='color:#111;'> 25.42KB </span>","children":null,"spread":false},{"title":"im2_kernel5_img.png <span style='color:#111;'> 29.09KB </span>","children":null,"spread":false},{"title":"im4_kernel6_img.png <span style='color:#111;'> 26.66KB </span>","children":null,"spread":false},{"title":"im3_kernel2_img.png <span style='color:#111;'> 29.14KB </span>","children":null,"spread":false},{"title":"im4_kernel3_img.png <span style='color:#111;'> 27.02KB </span>","children":null,"spread":false},{"title":"im2_kernel6_img.png <span style='color:#111;'> 29.06KB </span>","children":null,"spread":false},{"title":"im3_kernel3_img.png <span style='color:#111;'> 29.79KB </span>","children":null,"spread":false},{"title":"im1_kernel3_img.png <span style='color:#111;'> 28.24KB </span>","children":null,"spread":false},{"title":"im3_kernel5_img.png <span style='color:#111;'> 29.97KB </span>","children":null,"spread":false},{"title":"im3_kernel4_img.png <span style='color:#111;'> 27.92KB </span>","children":null,"spread":false},{"title":"im2_kernel8_img.png <span style='color:#111;'> 28.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"selfdeblur_ycbcr.py <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"selfdeblur_levin.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"networks","children":[{"title":"downsampler.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"non_local_dot_product.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"fcn.py <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"skip.py <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"non_local_gaussian.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"non_local_embedded_gaussian.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"non_local_concatenation.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"texture_nets.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"downsampler.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"non_local_dot_product.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"skip.py <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"skipfc.py <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"non_local_gaussian.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"non_local_embedded_gaussian.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"non_local_concatenation.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false}],"spread":false},{"title":"selfdeblur_levin_reproduce.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"common_utils.py <span style='color:#111;'> 8.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"selfdeblur_lai.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"SSIM.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"selfdeblur_lai_reproduce.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"selfdeblur_nonblind.py <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"statistic","children":[{"title":"comp_upto_shift.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"psnr.m <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"statistic_lai.m <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"statistic_levin.m <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"ssim.m <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明