基于注意力机制的在线自适应孪生网络跟踪算法

上传者: 38611459 | 上传时间: 2022-03-11 13:53:36 | 文件大小: 8.75MB | 文件类型: -
针对全卷积孪生(SiamFC)网络算法在相似目标共存和目标外观发生显著变化时跟踪失败的问题,提出一种基于注意力机制的在线自适应孪生网络跟踪算法(AAM-Siam)来增强网络模型的判别能力,实现在线学习目标外观变化并抑制背景。首先,分别在模板分支和搜索分支中加入前一帧跟踪所得到的结果,弥补网络在应对目标外观变化的不足;然后通过在孪生网络中加入空间注意力模块和通道注意力模块实现不同帧之间的特征融合,从而在线学习目标形变并抑制背景,进一步提升模型的特征表达能力;最后,在OTB和VOT2016跟踪基准库上进行实验。实验结果表明,本文算法在OTB50数据集上的精确度和平均成功率比基础算法SiamFC分别高出了4.3个百分点和3.6个百分点。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明