基于K-均值聚类粒子群优化算法的组合测试数据生成 (2012年)

上传者: 38610717 | 上传时间: 2022-05-09 18:18:08 | 文件大小: 372KB | 文件类型: PDF
在解决组合测试中的测试数据集生成问题时,粒子群优化算法(PSO)在待测数据量增加达到一定程度以后,出现迭代次数增加、收敛速度减慢的缺点。针对该问题,提出了一种应用于组合测试数据集生成问题的基于K-均值聚类的粒子群优化算法。通过对测试数据集合进行聚类分区域,增强测试数据集的多态性,从而对粒子群优化算法进行改进,增加各个区域内粒子之间的影响力。典型案例实验表明该方法在保证覆盖度的情况下具有一定的优势和特点。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明