上传者: 38610717
|
上传时间: 2022-05-09 18:18:08
|
文件大小: 372KB
|
文件类型: PDF
在解决组合测试中的测试数据集生成问题时,粒子群优化算法(PSO)在待测数据量增加达到一定程度以后,出现迭代次数增加、收敛速度减慢的缺点。针对该问题,提出了一种应用于组合测试数据集生成问题的基于K-均值聚类的粒子群优化算法。通过对测试数据集合进行聚类分区域,增强测试数据集的多态性,从而对粒子群优化算法进行改进,增加各个区域内粒子之间的影响力。典型案例实验表明该方法在保证覆盖度的情况下具有一定的优势和特点。