上传者: 38610513
|
上传时间: 2023-02-06 20:40:03
|
文件大小: 83KB
|
文件类型: PDF
在深度学习中,如果我们想获得某一个层上的feature map,就像下面的图这样,怎么做呢?
我们的代码是使用keras写的VGG16网络,网络结构如图:
那么我们随便抽取一层的数据吧,就拿第四层的pooling以后的结果作为输出吧,参考上面的网络结构,得到的结果维度应该是[1,56,56,128]的尺度。
怎么做呢?
首先通过keras构建模型:
model = VGG16(include_top=True, weights='imagenet')
然后设置输入和输出为:原始的输入和该层对应的输出,然后使用predict函数得到对应的结果
dense_result = Model(in