股票选择和投资组合优化的长期短期记忆方法-研究论文

上传者: 38607195 | 上传时间: 2022-02-18 08:45:06 | 文件大小: 783KB | 文件类型: -
在本文中,我们展示了如何将长短期记忆 (LSTM) 类神经网络用于股票选择和投资组合优化。 我们使用 LSTM 网络来预测股票运动的方向和股票价格代理度量,并将这些用于股票选择和 Markowitz 均值方差投资组合优化框架。 使用印度 SENSEX 股票数据构建了四种类型的 LSTM 模型——个体模型和集合模型,每种模型都使用批量和增量学习方法进行训练。 我们在投资组合优化阶段利用入围股票中股票运动方向分类的准确性。 在投资组合优化阶段,除了标准的 Markowitz 公式之外,还构建了多样化和卖空的 Markowitz 公式。 我们还建议使用 LSTM 分类精度的补充作为风险度量,代替 Markowitz 框架内的协方差矩阵。 LSTM 构建和投资组合优化公式类型的上述每种组合的结果都针对 SENSEX 和标准最优 Markowitz 投资组合进行了基准测试,没有股票选择。 我们还推导出具有股票价格预测因子比平均股票价格更准确的 Markowitz 公式优于标准 Markowitz 公式的条件。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明