线性变分去噪matlab代码-LLF:使用深度学习先验和局部线性拟合的惩罚性PET重建

上传者: 38603875 | 上传时间: 2022-01-21 19:56:03 | 文件大小: 2.14MB | 文件类型: -
线性变分去噪声matlab代码使用深度学习先验和局部线性拟合的惩罚性PET重建 你好, 我是金敬尚。 (kssigari(at)gmail.com,kkim24(at)mgh.harvard.edu) 该代码用于以下论文:Kyungsang Kim等。 “使用深度学习先验和局部线性拟合对PET进行重建”,IEEE Transactions on Medical Imaging。 () 由于数据文件带有链接,因此请仔细阅读以下内容。 抽象的 受深度学习在医学成像中巨大潜力的推动,我们提出了一种基于深度学习的先验迭代正电子发射断层扫描(PET)重建框架。 我们利用去噪卷积神经网络(DnCNN)方法,并使用全剂量图像作为地面真实情况和通过泊松细化从下采样数据重构的低剂量图像作为输入来训练网络。 由于大多数公开的深度网络都是在预定的噪声水平下进行训练的,因此训练和测试数据的噪声水平差异是它们作为通用先验技术的适用性的主要问题。 特别是,噪声水平在每次迭代中都会发生显着变化,这可能会降低迭代重建的总体性能。 由于现有研究不足,我们进行了仿真并评估了各种噪声条件下性能的下降。 我们的发现表明,Dn

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明