基于Seq2Seq模型的港口进出口货物量预测

上传者: 38599545 | 上传时间: 2021-09-08 16:59:52 | 文件大小: 1.54MB | 文件类型: PDF
港口进出口货物吞吐量是反映港口业务状况的重要指标,其准确预测将给港口经营管理人员进行决策提供重要的依据.利用机器翻译领域的Seq2Seq模型,对影响港口进出货物量的多种因素进行建模.Seq2Seq模型可以反映进出口货物量在时间维度上的变化规律,并且可以刻画天气、节假日等外部因素的影响,从而进行精准预测.Seq2Seq模型包含两个由循环神经网络(LSTM)组成的编码器和解码器,能够捕捉长短期时间范围内集装箱变化趋势,可以根据历史进出口货物量预测未来一段时间的货物量信息.在真实的天津港进出口集装箱数据集上进行了实验,结果表明Seq2Seq模型的深度学习预测方法效果优于传统的时间序列模型以及其他现有的机器学习预测模型.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明