基于变分自编码器的生成式文本摘要研究

上传者: 38595473 | 上传时间: 2021-12-12 10:35:17 | 文件大小: 1.16MB | 文件类型: -
从单文档中生成简短精炼的摘要文本可有效缓解信息爆炸给人们带来的阅读压力。近年来,序列到序列(sequence-to-sequence,Seq2Seq)模型在各文本生成任务中广泛应用,其中结合注意力机制的Seq2Seq模型已成为生成式文本摘要的基本框架。为生成能体现摘要的特定写作风格特征的摘要,在基于注意力和覆盖率机制的Seq2Seq模型基础上,在解码阶段利用变分自编码器(variational auto-encoder,VAE)刻画摘要风格特征并用于指导摘要文本生成;最后,利用指针生成网络来缓解模型中可能出现的未登录词问题。基于新浪微博LCSTS数据集的实验结果表明,该方法能有效刻画摘要风格特征、缓解未登录词及重复生成问题,使得生成的摘要准确性高于基准模型。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明