回归树matlab代码-GENIE3:基于机器学习的方法可根据表达数据推断基因调控网络

上传者: 38595356 | 上传时间: 2022-05-09 10:42:13 | 文件大小: 1.52MB | 文件类型: ZIP
回归树matlab代码GENIE3 基于机器学习的方法,可根据表达数据推断基因调控网络。 GENIE3方法在以下论文中描述(可用): Huynh-Thu V. A., Irrthum A., Wehenkel L., and Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE, 5(9):e12776, 2019. GENIE3的四个实现可用:Python,MATLAB,R / randomForest和R / C。 每个文件夹都包含一个PDF文件,其中包含有关如何运行代码的分步教程。 注1:R / C实现也可以从安装。 注2: PLoS ONE论文中介绍的所有结果都是使用MATLAB实现生成的。 GENIE3基于回归树。 为了学习这些树,Python实现使用该库,MATLAB和R / C实现分别是编写的C代码的MATLAB和R包装器,而R / randomForest实现使用R包。 R / C实现是最快的GENIE3实现,是为SCENIC管道开发

文件下载

资源详情

[{"title":"( 39 个子文件 1.52MB ) 回归树matlab代码-GENIE3:基于机器学习的方法可根据表达数据推断基因调控网络","children":[{"title":"GENIE3-master","children":[{"title":"GENIE3_running_times_DREAM5_nov16.png <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"GENIE3_R","children":[{"title":"GENIE3_R_doc.pdf <span style='color:#111;'> 176.10KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false},{"title":"GENIE3.R <span style='color:#111;'> 11.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"GENIE3_MATLAB","children":[{"title":"example_data.mat <span style='color:#111;'> 7.70KB </span>","children":null,"spread":false},{"title":"RT","children":[{"title":"rtenslearn_c.mexmaci <span style='color:#111;'> 70.00KB </span>","children":null,"spread":false},{"title":"rtenslearn_c.mexw64 <span style='color:#111;'> 53.00KB </span>","children":null,"spread":false},{"title":"rtree-c","children":[{"title":"tree-multiregr.c <span style='color:#111;'> 40.13KB </span>","children":null,"spread":false},{"title":"tree-model.h <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"f-table.c <span style='color:#111;'> 12.01KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"tree-model.c <span style='color:#111;'> 51.42KB </span>","children":null,"spread":false},{"title":"rtenslearn_c.c <span style='color:#111;'> 16.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"init_bagging.m <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"friedman1.csv <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false},{"title":"init_extra_trees.m <span style='color:#111;'> 369B </span>","children":null,"spread":false},{"title":"rtenslearn_c.mexmaci64 <span style='color:#111;'> 74.45KB </span>","children":null,"spread":false},{"title":"rtenslearn_c.mexglx <span style='color:#111;'> 68.27KB </span>","children":null,"spread":false},{"title":"init_single_rt.m <span style='color:#111;'> 228B </span>","children":null,"spread":false},{"title":"rtenspred.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"init_rf.m <span style='color:#111;'> 376B </span>","children":null,"spread":false},{"title":"rtenslearn_c.mexw32 <span style='color:#111;'> 58.50KB </span>","children":null,"spread":false},{"title":"cvpredict.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"init_mart.m <span style='color:#111;'> 455B </span>","children":null,"spread":false},{"title":"rtexample.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"rtenslearn_c.mexa64 <span style='color:#111;'> 77.15KB </span>","children":null,"spread":false},{"title":"compute_rtens_variable_importance.m <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"GENIE3_single.m <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"GENIE3_MATLAB_doc.pdf <span style='color:#111;'> 178.36KB </span>","children":null,"spread":false},{"title":"get_link_list.m <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"GENIE3.m <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"GENIE3_python","children":[{"title":"GENIE3_python_doc.pdf <span style='color:#111;'> 181.79KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false},{"title":"GENIE3.py <span style='color:#111;'> 12.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"GENIE3_R_C_wrapper","children":[{"title":"GENIE3.c <span style='color:#111;'> 54.80KB </span>","children":null,"spread":false},{"title":"GENIE3_R_C_wrapper_doc.pdf <span style='color:#111;'> 178.14KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false},{"title":"GENIE3.R <span style='color:#111;'> 12.93KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明