一种含煤地层岩性优化识别方法

上传者: 38588592 | 上传时间: 2021-05-10 12:15:47 | 文件大小: 990KB | 文件类型: PDF
针对现有煤矿井下含煤地层岩性识别方法存在地层信息参数获取难度大、岩性识别精度低的问题,提出了一种基于主成分分析(PCA)算法和核模糊C均值聚类(KFCM)算法的含煤地层岩性优化识别方法。利用钻进试验台获取机械钻速、回转扭矩、钻压、转速、回转压力和泥浆泵流量6种钻进敏感参数,构造高维钻进参数集作为识别数据来源,包括训练样本和测试样本;结合PCA算法的特征提取优势和KFCM算法具有较好聚类效果的特点,建立基于PCA-KFCM算法的岩性识别模型;采用PCA算法对训练样本进行特征提取和降维处理,得到训练样本的特征值和特征向量;采用KFCM算法对训练样本主成分数据集进行模糊核聚类分析,将试验岩样分为若干类型;通过马氏距离判别法建立判别准则,利用最小马氏距离完成对测试样本的地层岩性识别。测试结果表明,基于PCA-KFCM算法的含煤地层岩性优化识别方法能够有效识别地层岩性,与常规KFCM算法相比,识别精度提高了23.2%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明