基于随机森林的高维数据可视化 (2014年)

上传者: 38586200 | 上传时间: 2021-10-14 17:59:24 | 文件大小: 527KB | 文件类型: -
目前对高维数据进行挖掘的方法大多是基于数学理论而非可视化的直觉。为便于直观分析和评价高维数据,提出引入随机森林(RF)方法对高维数据进行数据可视化。首先,采用RF进行有监督学习得到样本间的相似度度量,并采用主坐标分析法对其进行降维,将高维数据的关系信息变换到低维空间;然后,在低维空间中采用散点图进行可视化。在高维基因数据集上实验结果表明,基于RF有监督降维的可视化能够较好地展现高维数据的类分布规律,且优于传统的无监督降维后的可视化效果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明