数据融合matlab代码-KFNN-Master:基于卡尔曼滤波的多神经网络融合代码

上传者: 38569109 | 上传时间: 2021-08-20 09:47:36 | 文件大小: 3.62MB | 文件类型: ZIP
数据融合matlab代码KFNN大师 基于卡尔曼滤波的多神经网络融合代码 整个系统由两部分组成:神经网络的噪声估计和基于kfnn的多神经网络的融合。 数据集 神经网络的噪声估计和融合性能评价。 应用./ImageNet/val.py处理ImageNet并将数据组织为以下结构。 /ImageNet /val /n01440764 images /n01443537 images /train /test ImagNet中的预训练模型 借助中提供的开放式预训练模型,我们使用了16种经典的预训练模型作为基准,包括NASNetlarge,AlexNet,DenseNet121,ResNet18,ResNet34,ResNet50,ResNet101,ResNet152,VGG11,VGG11_bn,VGG13,VGG13_bn,VGG16,VGG16_bn,VGG19, VGG19_bn 。 我们分别评估了它们在ImageNet上的性能。 我们按照,完成了预训练模型的下载和应用。 验证集的准确性(单个模型) 在我们的机器上,下表显示了预训练模型的验证准确性。 预训练模型 帐户@ 1 NASNe

文件下载

资源详情

[{"title":"( 60 个子文件 3.62MB ) 数据融合matlab代码-KFNN-Master:基于卡尔曼滤波的多神经网络融合代码","children":[{"title":"KFNN-Master-main","children":[{"title":"Load_Pretrained_ImageNet.ipynb <span style='color:#111;'> 164.56KB </span>","children":null,"spread":false},{"title":"KFNN_FUSION","children":[{"title":"Readme.md <span style='color:#111;'> 14B </span>","children":null,"spread":false},{"title":"FUSE_2_OK.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"KFNN_Evaluate.ipynb <span style='color:#111;'> 40.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"ImageNet","children":[{"title":"valprep.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 10B </span>","children":null,"spread":false}],"spread":true},{"title":"Noise_Estimation","children":[{"title":"resnet34_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"densenet121_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg11_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"Normality test.ipynb <span style='color:#111;'> 28.07KB </span>","children":null,"spread":false},{"title":"vgg13_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"alexnet_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"save","children":[{"title":"ImageNet_100_alexnet_top1.jpg <span style='color:#111;'> 489.41KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg13_bn_top1.jpg <span style='color:#111;'> 455.48KB </span>","children":null,"spread":false},{"title":"ImageNet_100_resnet152_top1.jpg <span style='color:#111;'> 457.69KB </span>","children":null,"spread":false},{"title":"ImageNet_100_resnet18_top1.jpg <span style='color:#111;'> 452.50KB </span>","children":null,"spread":false},{"title":"ImageNet_100_resnet34_top1.jpg <span style='color:#111;'> 440.91KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg19_top1.jpg <span style='color:#111;'> 459.63KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg19_bn_top1.jpg <span style='color:#111;'> 452.43KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg11_bn_top1.jpg <span style='color:#111;'> 455.06KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg16_bn_top1.jpg <span style='color:#111;'> 445.62KB </span>","children":null,"spread":false},{"title":"ImageNet_100_nasnetalarge_top1.jpg <span style='color:#111;'> 466.29KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg16_top1.jpg <span style='color:#111;'> 442.13KB </span>","children":null,"spread":false},{"title":"ImageNet_100_resnet101_top1.jpg <span style='color:#111;'> 473.98KB </span>","children":null,"spread":false},{"title":"ImageNet_100_densenet121_top1.jpg <span style='color:#111;'> 472.75KB </span>","children":null,"spread":false},{"title":"ImageNet_100_resnet50_top1.jpg <span style='color:#111;'> 457.26KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg11_top1.jpg <span style='color:#111;'> 432.47KB </span>","children":null,"spread":false},{"title":"ImageNet_100_vgg13_top1.jpg <span style='color:#111;'> 436.88KB </span>","children":null,"spread":false}],"spread":false},{"title":"nasnetalarge_top1.npy <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"vgg19_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet152_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"densenet121_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg16_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet50_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet101_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet34_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"result.txt <span style='color:#111;'> 12.70KB </span>","children":null,"spread":false},{"title":"resnet18_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"Readme.md <span style='color:#111;'> 19B </span>","children":null,"spread":false},{"title":"vgg13_bn_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet50_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet101_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg19_bn_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg11_bn_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg13_bn_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg16_bn_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet18_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg19_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg16_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"NNNE_ImageNet100.ipynb <span style='color:#111;'> 835.40KB </span>","children":null,"spread":false},{"title":"alexnet_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"nasnetalarge_top5.npy <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"vgg19_bn_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg13_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"resnet152_top1.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg16_bn_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg11_bn_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"vgg11_top5.npy <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"imagenet_eval.py <span style='color:#111;'> 10.84KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明