上传者: 38559203
|
上传时间: 2021-11-16 15:01:16
|
文件大小: 283KB
|
文件类型: -
通过广泛的交流,已经推进了用图片区分个人。 尽管如此,独特的手指印象或视网膜检查的功能不那么强大。 这份报告描述了普利茅斯大学视觉观察和自治模块尝试的比正常任务更小的面部检测和识别。 它报告了开放计算机视觉 (OpenCV) 库中可访问的创新以及使用 Python 执行它们的技术。 对于人脸识别,使用了 Haar-Cascades,而对于人脸识别,使用了 Eigenfaces、Fisherfaces 和 Local 双示例直方图。 描述的过程包括框架每个阶段的流程图。 接下来,显示了结果,包括通过交流遇到的困难所追求的情节和屏幕截图。 报告以创作者对冒险和潜在应用的感受结束。 本文的意思是执行依赖于 Haar Cascade Classifiers 策略的人脸识别编程代码,并在 Raspberry Pi 阶段有效地实现该代码以进行连续识别。 在本文中,尝试在设备阶段执行面部确认计算,这是基本的,但在使用上是富有成效的。 面部检测和识别的产品源代码是利用 Opencv 和 Python 编写的。