[{"title":"( 31 个子文件 120.24MB ) 数据融合matlab代码-LFASR-FS-GAF:IEEETPAMI2020“具有灵活采样和几何感知融合的深度从粗到细的密集光场重构”的存储","children":[{"title":"LFASR-FS-GAF-master","children":[{"title":"README.md <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"dataset.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"dataset.cpython-36.pyc <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"util.cpython-36.pyc <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 12B </span>","children":null,"spread":false}],"spread":true},{"title":"pretrained_models","children":[{"title":"model_flexible_3-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false},{"title":"model_fixed_2x2-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.60MB </span>","children":null,"spread":false},{"title":"model_flexible_2-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false},{"title":"model_flexible_4-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.60MB </span>","children":null,"spread":false},{"title":"model_flexible_4-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.61MB </span>","children":null,"spread":false},{"title":"model_fixed_2x2-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.61MB </span>","children":null,"spread":false},{"title":"model_flexible_2-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.57MB </span>","children":null,"spread":false},{"title":"model_flexible_3-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false}],"spread":true},{"title":"LFData","children":[{"title":"PrepareData_train_HCI.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"list","children":[{"title":"Train_HCI.txt <span style='color:#111;'> 167B </span>","children":null,"spread":false},{"title":"Test_HCI_old.txt <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"Test_reflective.txt <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"Train_SIG.txt <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"Test_30scenes.txt <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"Test_HCI.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"Test_occlusions.txt <span style='color:#111;'> 467B </span>","children":null,"spread":false}],"spread":true},{"title":"PrepareData_test_HCI.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"PrepareData_train_SIG.m <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"PrepareData_test_lytro.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"net_utils.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"net_utils.cpython-36.pyc <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"model_lfasr.cpython-36.pyc <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"model_lfasr.py <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_pretrained.py <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]