数据融合matlab代码-LFASR-FS-GAF:IEEETPAMI2020“具有灵活采样和几何感知融合的深度从粗到细的密集光场重构”的存储

上传者: 38553275 | 上传时间: 2022-05-01 13:25:07 | 文件大小: 120.24MB | 文件类型: ZIP
数据融合matlab代码LFASR-FS-GAF IEEE TPAMI 2020文件的PyTorch实施:“具有灵活采样和几何感知的融合的从粗到细的密集光场重构”。 要求 Python 3.6 PyTorch 1.3 Matlab(用于培训/测试数据生成) 数据集 我们提供用于准备训练和测试数据的MATLAB代码。 请先下载光场数据集,然后将其放入LFData相应文件夹中。 演示版 要重现本文提供的实验结果,请运行: (我们的(固定)在任务2x2→7x7下,用于合成LF数据) python test_pretrained.py --model_dir pretrained_models --save_dir results --arb_sample 0 --angular_out 7 --angular_in 2 --train_dataset HCI --test_dataset HCI --test_path ./LFData/test_HCI.h5 --psv_range 4 --psv_step 50 --input_ind 0 6 42 48 --save_img 1 --c

文件下载

资源详情

[{"title":"( 31 个子文件 120.24MB ) 数据融合matlab代码-LFASR-FS-GAF:IEEETPAMI2020“具有灵活采样和几何感知融合的深度从粗到细的密集光场重构”的存储","children":[{"title":"LFASR-FS-GAF-master","children":[{"title":"README.md <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"dataset.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"dataset.cpython-36.pyc <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"util.cpython-36.pyc <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 12B </span>","children":null,"spread":false}],"spread":true},{"title":"pretrained_models","children":[{"title":"model_flexible_3-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false},{"title":"model_fixed_2x2-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.60MB </span>","children":null,"spread":false},{"title":"model_flexible_2-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false},{"title":"model_flexible_4-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.60MB </span>","children":null,"spread":false},{"title":"model_flexible_4-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.61MB </span>","children":null,"spread":false},{"title":"model_fixed_2x2-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.61MB </span>","children":null,"spread":false},{"title":"model_flexible_2-7x7_pr2ps50_SIG.pth <span style='color:#111;'> 17.57MB </span>","children":null,"spread":false},{"title":"model_flexible_3-7x7_pr4ps50_HCI.pth <span style='color:#111;'> 17.59MB </span>","children":null,"spread":false}],"spread":true},{"title":"LFData","children":[{"title":"PrepareData_train_HCI.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"list","children":[{"title":"Train_HCI.txt <span style='color:#111;'> 167B </span>","children":null,"spread":false},{"title":"Test_HCI_old.txt <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"Test_reflective.txt <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"Train_SIG.txt <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"Test_30scenes.txt <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"Test_HCI.txt <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"Test_occlusions.txt <span style='color:#111;'> 467B </span>","children":null,"spread":false}],"spread":true},{"title":"PrepareData_test_HCI.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"PrepareData_train_SIG.m <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"PrepareData_test_lytro.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"net_utils.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"net_utils.cpython-36.pyc <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"model_lfasr.cpython-36.pyc <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"model_lfasr.py <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_pretrained.py <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明