matlab如何用代码拟合幂函数-Regularized-Linear-Regression-and-Bias-v.s.-Variance:正

上传者: 38545961 | 上传时间: 2022-04-27 17:23:59 | 文件大小: 239KB | 文件类型: ZIP
matlab如何用代码拟合幂函数正则化线性回归与偏差与方差 在本练习中,您将实现正则化线性回归并将其用于研究具有不同偏差方差属性的模型。 在进行编程练习之前,我们强烈建议您观看视频讲座并完成相关主题的复习问题。 要开始练习,您需要下载启动程序代码并将其内容解压缩到您希望完成练习的目录中。 如果需要,在开始本练习之前,请使用Octave / MATLAB中的cd命令更改为该目录。 您也可以在课程网站的“环境设置说明”中找到有关安装Octave / MATLAB的说明。 这种分配有助于我们理解偏差和方差如何与模型的可预测性不同。 本练习中包含的文件 ex5.m-引导您完成练习的Octave / MATLAB脚本ex5data1.mat-数据集Submit.m-将解决方案发送到我们服务器的提交脚本featureNormalize.m-功能规范化函数fmincg.m-功能最小化例程(类似于fminunc )plotFit.m-绘制多项式拟合trainLinearReg.m-使用您的成本函数训练线性回归 [1] linearRegCostFunction.m-正则化线性回归成本函数 [2] le

文件下载

资源详情

[{"title":"( 4 个子文件 239KB ) matlab如何用代码拟合幂函数-Regularized-Linear-Regression-and-Bias-v.s.-Variance:正","children":[{"title":"Regularized-Linear-Regression-and-Bias-v.s.-Variance-master","children":[{"title":"Regularised Linear regression.ipynb <span style='color:#111;'> 81.96KB </span>","children":null,"spread":false},{"title":"ex5data1.mat <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"ex5.pdf <span style='color:#111;'> 182.97KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明