基于鸢尾花数据集实现线性判别式多分类

上传者: 38538021 | 上传时间: 2021-12-23 20:19:18 | 文件大小: 48KB | 文件类型: -
基于鸢尾花数据集实现线性判别式多分类 本文在自己编写梯度下降的逻辑斯蒂判别式算法的基础上,对鸢尾花数据集实现多分类。 鸢尾花数据集公包含三类数据,每条数据四个特征,从中随机选取70%的数据作为训练集,30%的数据作为测试集。 主要包含三个函数:随机生成70%测试集函数、训练函数、预测函数 随机生成70%测试集函数 randomdata 输入:无 输出:0-49之间的35个随机数 代码: def randomdata(): array = set() while(len(array) < 50*0.7): n = random.randint(0,49)

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明