基于深度学习算法的卫星影像变化监测

上传者: 38526421 | 上传时间: 2022-02-16 20:39:12 | 文件大小: 1.72MB | 文件类型: -
遥感影像的变化检测是遥感应用研究的热点之一,在城市变化、环境监测、土地利用以及基础地理数据库更新等领域中有着广泛的应用.变化检测是从不同时期的遥感数据中定量分析和确定地表变化的特征和过程,具体工作是对同一地区不同时相的两幅或多幅图像进行分析,检测出其中的变化部分与未变化部分.本文提出了基于堆栈降噪自动编码器网络的变化检测方法,将应用于SAR (Synthetic Aperture Radar,合成孔径雷达)卫星图像变化检测的深度学习算法改进,使之适用于高分光学卫星图像,然后在孪生网络的结构上进行改进,提出了基于分支卷积神经网络的变化检测方法,最后设计算法去除了阴影干扰和噪声等伪变化,并在高分二号卫星中宁夏地区的实际生产数据影像上进行了测试,取得了不错的效果.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明