核密度非参数估计的matlab代码-ICA-R-Estimation:ICA模型中混合矩阵的R-Estimator

上传者: 38519681 | 上传时间: 2022-03-24 18:10:01 | 文件大小: 12KB | 文件类型: -
核密度非参数估计的matlab代码ICA-R-估计 参考: M. Hallin & C. Mehta (2015)。 非对称独立分量分析的 R 估计。 美国统计协会杂志,110(509),218-232 独立分量分析 (ICA) 是一种多变量统计方法,其中将观察到的信号去卷积或分离为独立的潜在源信号。 在 ICA 模型中,观察到的 m 向量满足 , 其中 是一个非奇异维混合矩阵和 是一个向量,其分量 S_k(t) 具有成对独立分布(超过 t=1,2,...)。 ICA 的一个主要目标是从观察到的 X 向量中估计混合矩阵 ()。 将混合矩阵的准确估计的逆应用于观察到的混合 X 向量允许恢复 ICA 模型中的源信号。 在这个项目中,我们为混合矩阵提出了一个单步 R 估计器,旨在针对具有重尾分布的源信号和其他类型的噪声(相对于混合矩阵的现有估计器)实现更大的鲁棒性。 此外,我们能够通过半参数程序阐明 R 估计量的渐近特性,例如其极限分布。 评估 R 估计器首先需要 获得混合矩阵的初步估计量 L0,以实现根 n 一致性和 为各个未观察到的独立源信号指定单变量分布 f:=(f1,...,fm)

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明