基于时间序列的前馈神经网络的研究

上传者: 38519387 | 上传时间: 2022-07-04 13:33:30 | 文件大小: 1.56MB | 文件类型: PDF
针对时间序列识别的难点,介绍了一种被称为动态时间规整神经网络(DTW-NN)的新颖的时间序列识别模型,DTW-NN是一种利用动态时间规整(DTW)的弹性匹配能力来将层的输入与权值动态对齐的前馈神经网络。通过这种方式,DTW-NN能够解决时间序列识别的困难,例如在前馈结构中的时间失真和可变模式长度。结合在4个不同的数据集上的实验,证明了DTW-NN的有效性:在线手写字符、基于加速度计的活跃的日常生活活动、阿拉伯数字口语的Mel频率倒谱系数(MFCC)和叶形的一维质心半径序列。通过在这些数据集上获得的结果,证明了该方法是一种有效的时间模式学习的通用方法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明