基于多维特征融合的双目立体匹配算法研究

上传者: 38516863 | 上传时间: 2022-10-10 23:53:43 | 文件大小: 11.5MB | 文件类型: PDF
大部分基于卷积神经网络的双目立体匹配算法往往将双目图像对的像素级别特征作为匹配代价进行计算,缺乏将全局特征信息结合到立体匹配算法的能力,导致不适定区域(如弱纹理区域、反光表面、细长结构、视差不连续区域等)的匹配精度差,进而影响整体立体匹配精度。针对这个问题,提出一种基于多维特征融合(MDFF)的立体匹配算法,该算法主要由三个模块组成:残差开端(Inception-ResNet)模块、空间金字塔池化(SPP)模块和堆叠沙漏网络(SHN)模块。Inception-ResNet模块主要提取图像对局部特征信息;SPP模块主要提取图像对全局特征信息,构建匹配代价卷;SHN模块用来规则化匹配代价卷。在KITTI2012和KITTI2015数据集上进行验证,可得本文算法的三像素平均误匹配率为1.62%和1.78%,超过了国内外大部分先进算法;此外,本文提出的立体匹配算法在Apollo数据集和Middlebury数据集上也表现较好。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明