matlabsvr代码-svm-parameter-selection:支持向量机参数选择

上传者: 38502814 | 上传时间: 2021-09-18 16:46:23 | 文件大小: 8.54MB | 文件类型: ZIP
matlab svr代码支持向量机已成为解决各个领域分类和回归问题的重要学习技术。 然而,惩罚参数和内核参数的选择不当会显着降低 SVR 的性能。 自然地,没有启发式算法中低效的搜索策略和较长的搜索时间,元启发式已被引入作为与问题无关的技术,以在广泛的问题中获得可接受的最优值。 因此本程序旨在为SVM参数选择提供元启发式的仿真代码。 如何使用 基本的 GS-SVR 和 GA-SVR 演示可以在matlab-implement文件夹中找到。 [bestCVmse,bestc,bestg] = SVMcgForRegress(TrainL,Train,-8,8,-8,8,5,0.4,0.4) cmd = ['-c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -p 0.01']; 许多元启发式代码可以在 或 中找到。更多基于元启发式的算法可以通过ABC_SVM来ABC_SVM 。 待续。 调查报告 李赛、方华景和刘晓勇。 《基于正余弦算法的支持向量回归参数优化》。 具有应用程序的专家系统(2017 年)。 (SCI,影响因子:3.928,doi

文件下载

资源详情

[{"title":"( 84 个子文件 8.54MB ) matlabsvr代码-svm-parameter-selection:支持向量机参数选择","children":[{"title":"svm-parameter-selection-master","children":[{"title":"GridSearch","children":[{"title":"SVMcgForClass.m <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"SVMcgForRegress.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"基于GridSearch的svm参数寻优.pdf <span style='color:#111;'> 686.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"GeneticAlgorithm","children":[{"title":"gaSVMcgpForRegress_2010.m <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"reclin.m <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"gaSVMcgpForRegress.m <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"resplot.m <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"xovsprs.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"xovsp.m <span style='color:#111;'> 1012B </span>","children":null,"spread":false},{"title":"gaSVMcgForRegress_2010.m <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"contents.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"xovdprs.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"recdis.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"xovmp.m <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"gaSVMcgForRegress.m <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"recombin.m <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"bs2rv.m <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"gaSVMcgForClass_2010.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"recmut.m <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"xovshrs.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"crtrp.m <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"migrate.m <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false},{"title":"sus.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"mutbga.m <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"crtbp.m <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"reins.m <span style='color:#111;'> 5.32KB </span>","children":null,"spread":false},{"title":"gaSVMcgForClass.m <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"rws.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"xovdp.m <span style='color:#111;'> 1011B </span>","children":null,"spread":false},{"title":"gaRVMcgForRegress.m <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"select.m <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"recint.m <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"ranking.m <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"gaSVM.m <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"xovsh.m <span style='color:#111;'> 1001B </span>","children":null,"spread":false},{"title":"plotroc2009b.m <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"crtbase.m <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"rep.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"mpga.m <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"mut.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"scaling.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"mutate.m <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"CS_SVM","children":[{"title":"ssa.m <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"x110.mat <span style='color:#111;'> 16.79KB </span>","children":null,"spread":false},{"title":"cuckoo_search.m <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"chapter_sh.mat <span style='color:#111;'> 214.82KB </span>","children":null,"spread":false},{"title":"chapter_sh.m <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"get_best_nest.m <span style='color:#111;'> 486B </span>","children":null,"spread":false},{"title":"fun.m <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"empty_nests.m <span style='color:#111;'> 682B </span>","children":null,"spread":false},{"title":"get_cuckoos.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"simplebounds.m <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"bugu.m <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"CS_SVM.m <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"FA","children":[{"title":"FA_SVM_exmp.m <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"ffa_mincon_svm.m <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"wine.mat <span style='color:#111;'> 19.70KB </span>","children":null,"spread":false},{"title":"objfun_svm.m <span style='color:#111;'> 403B </span>","children":null,"spread":false}],"spread":true},{"title":"ABC_SVM","children":[{"title":"rosenbrock.M <span style='color:#111;'> 597B </span>","children":null,"spread":false},{"title":"ABCSVM_Test.m <span style='color:#111;'> 841B </span>","children":null,"spread":false},{"title":"GreedySelection.m <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"rastrigin.M <span style='color:#111;'> 561B </span>","children":null,"spread":false},{"title":"ABCSVMcgForRegress.m <span style='color:#111;'> 9.30KB </span>","children":null,"spread":false},{"title":"calculateFitness.m <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"ABCSVMcgpForRegress.m <span style='color:#111;'> 9.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"ParticleSwarmOptimiser","children":[{"title":"PSOPC.m <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"PSO_visualisation.m <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"psoSVMcgpForRegress.m <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"第3章 粒子群优化算法pt1.pdf <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false},{"title":"PSO_standard.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"群体智能优化算法之粒子群优化算法.pdf <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false},{"title":"第3章PSO求解约束优化问题pt3.pdf <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"通俗理解粒子群优化算法.pdf <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"PSO.m <span style='color:#111;'> 31.73KB </span>","children":null,"spread":false},{"title":"psoSVMcgForClass.m <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"psoRVMcgForRegress.m <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"第3章 PSO收敛性pt2.pdf <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"PSO.jpg <span style='color:#111;'> 31.58KB </span>","children":null,"spread":false},{"title":"psoSVMcgForRegress.m <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"f10.m <span style='color:#111;'> 237B </span>","children":null,"spread":false},{"title":"VPSO.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 110B </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明