基于Web挖掘的个性化视频推荐系统设计与实现

上传者: 38502693 | 上传时间: 2021-12-08 16:48:10 | 文件大小: 1.71MB | 文件类型: -
伴随着蓬勃发展的视频业务及内容,海量的视频信息常常导致用户选择困难,视频推荐技术随之诞生。传统的协同过滤算法存有推荐精度不高以及系统自身冷启动等问题。文章中设计并开发出一种基于Web挖掘的个性化视频推荐系统。该方法是采用用户Web日志模式进行分析,搜聚用户行为与属性建立效用数据矩阵,生成目标用户兴趣模型,在针对稀疏数据处理中采用PCA方式进行数据降维处理,也将内容和协同过滤的推荐优势同构化形成混合推荐算法,改进相似度计算方式。最终,实验结果验证了基于内容和协同过滤的混合推荐算法的平均绝对误差(MAE)比传统的基于内容或协同过滤算法整体降低了15%和6%。最后,利用Python Web技术和文章改进的算法搭建了电影推荐的原型系统。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明