利用局部光谱异质性度量优化多尺度分割,用于高分辨率遥感影像

上传者: 38501826 | 上传时间: 2021-03-30 21:08:51 | 文件大小: 3.87MB | 文件类型: PDF
图像分割是基于地理对象的图像分析(GEOBIA)中至关重要的基础步骤。 许多多尺度分割算法已被广泛用于高分辨率(HR)遥感图像中。 这些细分算法需要一个预设参数(称为scale参数)来控制每个对象的平均大小。 但是,由于空间变化,单一尺度参数几乎不能描述具有不同土地覆被的区域的边界。 为了克服这一局限性,本研究提出了一种用于多尺度分割的自适应参数优化方法。 为了找到最佳的物体尺度,通过计算物体内部和内部物体之间的光谱角来应用局部光谱异质性度量。 与选择全局最优尺度参数不同,本研究旨在从所有不同尺度的结果中直接搜索最优对象,并将其组合为最终的分割结果。 在实验中,使用多分辨率分割生成不同比例的分割结果,并将QuickBird-2图像用作test.data。 在四张HR测试图像上的优化结果表明,与单尺度分割结果相比,该方法具有更好的分割效果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明