注意力机制改进轻量 SSD 模型的海面小目标检测

上传者: 38346042 | 上传时间: 2022-06-25 19:08:59 | 文件大小: 2.11MB | 文件类型: PDF
海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。 使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。 为此,在标准的SSD( single shot multiBox detector)目标检测模型基础上,结合 Xception 深度可分卷积,提出一种轻量 SSD 模型用于海面目标检测。 方法 在标准的 SSD 目标检测模型基础上,使用基于 Xception 网络的深度可分卷积特征提取网络网络中的 exit flow 层和 Conv1 层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量 SSD 目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明