SRCNN+pytorch+matlab.rar

上传者: 37897927 | 上传时间: 2021-07-06 09:09:28 | 文件大小: 9.41MB | 文件类型: RAR
SRCNN两种实现代码,一个matlab,一个python。SRCNN(Super-Resolution Convolutional Neural Network)是首次在超分辨率重建领域应用 卷积神经网络 的深度学习模型。对于输入的一张低分辨率图像,SRCNN首先使用双立方插值将其放大至目标尺寸,然后利用一个三层的 卷积神经网络 去拟合低分辨率图像与高分辨率图像之间的非线性映射,最后将网络输出的结果作为重建后的高分辨率图像。

文件下载

资源详情

[{"title":"( 51 个子文件 9.41MB ) SRCNN+pytorch+matlab.rar","children":[{"title":"SRCNN超分辨","children":[{"title":"SRCNN","children":[{"title":"Set5","children":[{"title":"bird_GT.bmp <span style='color:#111;'> 243.05KB </span>","children":null,"spread":false},{"title":"woman_GT.bmp <span style='color:#111;'> 229.83KB </span>","children":null,"spread":false},{"title":"head_GT.bmp <span style='color:#111;'> 229.74KB </span>","children":null,"spread":false},{"title":"butterfly_GT.bmp <span style='color:#111;'> 192.12KB </span>","children":null,"spread":false},{"title":"baby_GT.bmp <span style='color:#111;'> 768.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"Set14","children":[{"title":"man.bmp <span style='color:#111;'> 768.05KB </span>","children":null,"spread":false},{"title":"barbara.bmp <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false},{"title":"coastguard.bmp <span style='color:#111;'> 297.05KB </span>","children":null,"spread":false},{"title":"face.bmp <span style='color:#111;'> 223.23KB </span>","children":null,"spread":false},{"title":"flowers.bmp <span style='color:#111;'> 530.33KB </span>","children":null,"spread":false},{"title":"bridge.bmp <span style='color:#111;'> 257.05KB </span>","children":null,"spread":false},{"title":"ppt3.bmp <span style='color:#111;'> 1017.37KB </span>","children":null,"spread":false},{"title":"monarch.bmp <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false},{"title":"pepper.bmp <span style='color:#111;'> 768.05KB </span>","children":null,"spread":false},{"title":"comic.bmp <span style='color:#111;'> 265.16KB </span>","children":null,"spread":false},{"title":"baboon.bmp <span style='color:#111;'> 703.18KB </span>","children":null,"spread":false},{"title":"zebra.bmp <span style='color:#111;'> 672.08KB </span>","children":null,"spread":false},{"title":"foreman.bmp <span style='color:#111;'> 297.05KB </span>","children":null,"spread":false},{"title":"lenna.bmp <span style='color:#111;'> 768.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"SRCNN.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"Readme.txt <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"9-1-5(ImageNet)","children":[{"title":"x3.mat <span style='color:#111;'> 37.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"9-1-5(91 images)","children":[{"title":"x2.mat <span style='color:#111;'> 37.72KB </span>","children":null,"spread":false},{"title":"x4.mat <span style='color:#111;'> 37.59KB </span>","children":null,"spread":false},{"title":"x3.mat <span style='color:#111;'> 37.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"9-5-5(ImageNet)","children":[{"title":"x2.mat <span style='color:#111;'> 262.63KB </span>","children":null,"spread":false},{"title":"x4.mat <span style='color:#111;'> 262.70KB </span>","children":null,"spread":false},{"title":"x3.mat <span style='color:#111;'> 261.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"9-3-5(ImageNet)","children":[{"title":"x3.mat <span style='color:#111;'> 112.39KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"compute_psnr.m <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"shave.m <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"demo_SR.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"modcrop.m <span style='color:#111;'> 279B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"SRCNN-pytorch-master","children":[{"title":"SRCNN-pytorch-master","children":[{"title":"models.py <span style='color:#111;'> 541B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"butterfly_GT_srcnn_x3.bmp <span style='color:#111;'> 191.30KB </span>","children":null,"spread":false},{"title":"ppt3_bicubic_x3.bmp <span style='color:#111;'> 1011.71KB </span>","children":null,"spread":false},{"title":"ppt3_srcnn_x3.bmp <span style='color:#111;'> 1011.71KB </span>","children":null,"spread":false},{"title":"ppt3.bmp <span style='color:#111;'> 1017.37KB </span>","children":null,"spread":false},{"title":"butterfly_GT.bmp <span style='color:#111;'> 192.12KB </span>","children":null,"spread":false},{"title":"zebra_srcnn_x3.bmp <span style='color:#111;'> 668.84KB </span>","children":null,"spread":false},{"title":"zebra.bmp <span style='color:#111;'> 672.08KB </span>","children":null,"spread":false},{"title":"butterfly_GT_bicubic_x3.bmp <span style='color:#111;'> 191.30KB </span>","children":null,"spread":false},{"title":"zebra_bicubic_x3.bmp <span style='color:#111;'> 668.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"prepare.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"thumbnails","children":[{"title":"fig1.png <span style='color:#111;'> 191.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明