上传者: 33471298
|
上传时间: 2021-07-15 16:19:32
|
文件大小: 4.03MB
|
文件类型: PDF
最优传输理论的详细数学基础“When I was first approached for the 2005 edition of the Saint-Flour Probability Summer School, I was intrigued, flattered and scared.1 Apart from the challenge posed by the teaching of a rather analytical subject to a probabilistic audience, there was the danger of producing a remake of my recent book Topics in Optimal Transportation. However, I gradually realized that I was being offered a unique opportunity to rewrite the whole theory from a different perspective, with alternative proofs and a different focus, and a more probabilistic presentation; plus the incorporation of recent progress. Among the most striking of these recent advances, there was the rising awareness that John Mather’s minimal measures had a lot to do with optimal transport, and that both theories could actually be embedded in a single framework. There was also the discovery that optimal transport could provide a robust synthetic approach to Ricci curvature bounds. These links with dynamical systems on one hand, differential geometry on the other hand, were only briefly alluded to in my first book; here on the contrary they will be at the basis of the presentation. To summarize: more probability, more geometry, and more dynamical systems. Of course there cannot be more of everything, so in some sense there is less analysis and less physics, and also there are fewer digressions”