Flink读取Kafka数据保存到Redis的解决方案教程

上传者: 27102543 | 上传时间: 2022-01-20 17:48:10 | 文件大小: 1.63GB | 文件类型: -
大数据发展史: Flink和storm sparkstreaming对比 实时框架如何选择1:需要关注流数据是否需要进行状态管理 2:At-least-once或者Exectly-once消息投递模式是否有特殊要求 3:对于小型独立的项目,并且需要低延迟的场景,建议使用storm 4:如果你的项目已经使用了spark,并且秒级别的实时处理可以满足需求的话,建议使用sparkStreaming5:要求消息投递语义为 Exactly Once 的场景;数据量较大,要求高吞吐低延迟的场景;需要进行状态管理或窗口统计的场景,建议使用flink 针对以上知识我们通过flink读取kafka保存到redis方式快速让大家学习flink如何使用,以及我们如果搭建高性能的flink应用,这个课程属于快速实战篇。 Flink + kafka + redis 实时计算

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明