语义场景标注的点集分割-prescan手册

上传者: 26729841 | 上传时间: 2022-03-25 13:08:39 | 文件大小: 1.02MB | 文件类型: -
4.2 语义场景标注的点集分割 为了验证我们的方法适用于大规模点云分析,我们还评估了语义场景标记 任务。 目标是预测室内扫描中点的语义对象标签。 [5]在体素扫描上使用 完全卷积神经网络提供基线。 它们纯粹依赖于扫描几何体而不是 RGB 信 息,并以每个体素为基础报告精度。 为了进行公平的比较,我们在所有 实验中删除了 RGB 信息,并在[5]之后将点云标签预测转换为体素标签。 我们还与[20]进行了比较。 在图 5(蓝色条)中以每个体素为基础报告准 确度。 我们的方法大大优于所有基线方法。 与在体素扫描中学习的[5]相比,我 们直接学习点云以避免额外的量化误差,并进行数据相关采样以允许更有 效的学习。 与[20]相比,我们的方法引入了分层特征学习并捕获不同尺度 的几何特征。 这对于理解多个级别的场景和标记各种大小的对象非常重 要。 我们将示例场景标记结果可视化为图 6。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明