数学形态学中粗化与细化的C++实现源代码

上传者: wangdengwei | 上传时间: 2021-08-05 15:01:33 | 文件大小: 2.34MB | 文件类型: RAR
这是数学形态学中粗化与细化的源代码,有需要的同学请放心下载,并祝愿你学业有成。

文件下载

资源详情

[{"title":"( 61 个子文件 2.34MB ) 数学形态学中粗化与细化的C++实现源代码","children":[{"title":"粗化细化","children":[{"title":"DSplitDoc.cpp <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"STDAFX.CPP <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"DSPLIT.PLG <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"RES","children":[{"title":"DSPLIT.ICO <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"DSPLITDOC.ICO <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"DSPLIT.RC2 <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"desktop.ini <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"Toolbar.bmp <span style='color:#111;'> 478B </span>","children":null,"spread":false}],"spread":true},{"title":"DSplitDoc.h <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"resource.h <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"DSPLIT.NCB <span style='color:#111;'> 593.00KB </span>","children":null,"spread":false},{"title":"粗化原图.BMP <span style='color:#111;'> 71.45KB </span>","children":null,"spread":false},{"title":"Cdib.h <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"Dsplit.opt <span style='color:#111;'> 81.00KB </span>","children":null,"spread":false},{"title":"Dsplit.h <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"CDIB.CPP <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"Dsplitview.h <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"DSplit.rc <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false},{"title":"MAINFRM.CPP <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"24位图.bmp <span style='color:#111;'> 229.32KB </span>","children":null,"spread":false},{"title":"效果图","children":[{"title":"动态切分.bmp <span style='color:#111;'> 504.24KB </span>","children":null,"spread":false},{"title":"动态切分1.bmp <span style='color:#111;'> 755.37KB </span>","children":null,"spread":false},{"title":"desktop.ini <span style='color:#111;'> 266B </span>","children":null,"spread":false}],"spread":false},{"title":"STDAFX.H <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"DynSplitView2.cpp <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"DYNSPLITTERWND.H <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"MAINFRM.H <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"Dsplitview.cpp <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"DSPLIT.CLW <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"DYNSPLITTERWND.CPP <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"灰度图.bmp <span style='color:#111;'> 81.00KB </span>","children":null,"spread":false},{"title":"BianTiDib.cpp <span style='color:#111;'> 19.07KB </span>","children":null,"spread":false},{"title":"DSplit.aps <span style='color:#111;'> 29.76KB </span>","children":null,"spread":false},{"title":"Release","children":[{"title":"DSplitDoc.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"DSplit.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"DynSplitView2.obj <span style='color:#111;'> 21.91KB </span>","children":null,"spread":false},{"title":"MainFrm.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"DynSplitterWnd.obj <span style='color:#111;'> 11.89KB </span>","children":null,"spread":false},{"title":"vc60.idb <span style='color:#111;'> 49.00KB </span>","children":null,"spread":false},{"title":"DSplit.pch <span style='color:#111;'> 4.65MB </span>","children":null,"spread":false},{"title":"DynSplitView2.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"DSplitDoc.obj <span style='color:#111;'> 13.11KB </span>","children":null,"spread":false},{"title":"DSplit.res <span style='color:#111;'> 8.84KB </span>","children":null,"spread":false},{"title":"BianTiDib.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"Cdib.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"MainFrm.obj <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"DSplitView.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"DSplitView.obj <span style='color:#111;'> 18.39KB </span>","children":null,"spread":false},{"title":"StdAfx.obj <span style='color:#111;'> 566B </span>","children":null,"spread":false},{"title":"BianTiDib.obj <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"DSplit.obj <span style='color:#111;'> 15.48KB </span>","children":null,"spread":false},{"title":"StdAfx.sbr <span style='color:#111;'> 951.03KB </span>","children":null,"spread":false},{"title":"Cdib.obj <span style='color:#111;'> 8.77KB </span>","children":null,"spread":false},{"title":"DSplit.bsc <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"DynSplitterWnd.sbr <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"DSplit.dsp <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"DynSplitView2.h <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"DSPLIT.DSW <span style='color:#111;'> 579B </span>","children":null,"spread":false},{"title":"BianTiDib.h <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"Dsplit.cpp <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"README.TXT <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • jqygjy :
    算法还可以,能用
    2015-09-15
  • robot_tim :
    这个细化算法应该是快速zhang算法吧,不是形态学的击中/击不中算法
    2012-09-22
  • rsrj123456 :
    算法一般,有一定学习价值。但不能处理较大图像
    2012-08-13
  • lif1223 :
    是VC++的不是c++的
    2012-06-02
  • xldagger :
    这个细化算法是rosenfeld算法,不是二值形态学图像处理里面的那个细化算法。那个算法要用“击中击不中”来定义。
    2012-04-19

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明