上传者: u013701860
|
上传时间: 2025-11-05 21:50:42
|
文件大小: 12.75MB
|
文件类型: PDF
Programming in Parallel with CUDA A Practical Guide Richard Ansorge 2022-Cambridge-University
CUDA并行编程实战 安索奇 英文版
CUDA(Compute Unified Device Architecture)是由英伟达公司开发的一种并行计算平台和编程模型,使得GPU(图形处理单元)可以用于通用计算。CUDA如今已经成为用于GPU编程的主要语言,它使得开发者能够利用GPU的并行计算能力来处理复杂的计算任务。相较于传统的中央处理单元(CPU),GPU能够同时处理成千上万个小任务,这使得CUDA在科学和技术计算领域变得越来越重要。
CUDA并行编程的核心优势在于其能够在个人电脑上执行原本需要大量PC集群或高性能计算(HPC)设施支持的任务。这种能力特别重要,因为它可以显著减少大规模计算项目的时间和成本。在医学物理、金融建模、大数据应用等领域,CUDA技术已经广泛应用。特别是对于需要处理海量数据的应用场景,如机器学习、图像和信号处理、物理模拟等,CUDA提供了强大的支持。
本书《CUDA并行编程实战》的作者是剑桥大学卡文迪什实验室的资深大学高级讲师Richard Ansorge,他结合了自己在计算机发展和应用方面的激情以及长期积累的经验。本书以其独特性在GPU计算领域脱颖而出,书中包含了比其他任何GPU计算书籍都要丰富得多的例子集。本书特别注重C++编程风格,其特点是紧凑、优雅和高效。在线提供的代码库和辅助材料支持读者用于自己的项目。
Richard Ansorge不仅是一位资深的学者,还是剑桥大学Fitzwilliam学院的名誉导师和研究员。他的学术成就丰硕,发表了超过170篇同行评审的学术论文,并且是《MRI的物理学和数学》(2016年)一书的合著者。本书的出版社Cambridge University Press是剑桥大学的一部分,它的使命是传播知识,以追求最高国际水平的教育、学习和研究。
书中内容不仅仅限于CUDA编程技术,还包括了CUDA编程在实际应用中的深入讨论。例如,在医学影像处理、金融数据分析、大规模数据处理等方面的应用,都涵盖了丰富的实际案例。通过这些案例,读者可以更深刻地理解CUDA在不同领域中的应用潜力,以及如何针对特定问题进行优化和调整。
为了适应广大读者的需求,书中还讨论了CUDA编程的最佳实践,强调代码的可读性、可维护性和性能。书中展示了如何有效地使用CUDA的特性来解决现实世界中的高性能计算问题,尤其是在涉及复杂科学数据获取和分析的领域。作者提供了大量实用的技巧和建议,帮助读者快速掌握并利用CUDA的强大功能。
本书为读者提供了一个全面的CUDA学习资源,旨在帮助读者跨越CUDA学习的门槛,掌握并行编程的核心知识,并将其应用于解决实际问题中。无论是对于有经验的开发者还是对于并行计算感兴趣的初学者,本书都是一本宝贵的参考资料。通过对本书内容的学习,读者将能够更好地利用CUDA为自己的项目加速,提升计算效率和性能。