Chinese-license-plate-detection-recognition-main.zip

上传者: u011355389 | 上传时间: 2026-02-12 14:33:34 | 文件大小: 25.14MB | 文件类型: ZIP
《基于Yolov5的中文车牌检测与识别系统详解》 在现代智能交通系统中,车辆识别技术扮演着至关重要的角色,特别是在城市监控、停车场管理、道路安全等领域。本项目聚焦于一个特定的子任务——中文车牌的检测与识别,采用的是先进的深度学习框架Yolov5。该系统不仅能够精准地定位车辆的车牌,还能识别出包含12种不同类型的中文车牌,同时支持对双层车牌的检测,大大提高了识别的全面性和准确性。 一、Yolov5介绍 YOLO(You Only Look Once)是目标检测领域的一个里程碑式算法,以其快速高效而著名。Yolov5作为其最新版本,继承了前代的优点并进行了优化,提升了模型的精度和速度。它采用了单阶段的目标检测方法,直接预测边界框和类别概率,避免了两阶段方法中的先验框选择步骤,从而减少了计算量,提升了实时性。 二、车牌检测 在本项目中,Yolov5被训练来识别车辆的车牌位置。模型通过学习大量的带标注图像,学会了识别和定位车牌的关键特征。训练过程中,数据集包含各种角度、光照、遮挡条件下的车牌图片,确保模型具备良好的泛化能力。检测阶段,Yolov5会返回每个车牌的边界框坐标,使得后续的字符识别步骤能准确地聚焦在车牌区域内。 三、车牌识别 识别部分是将检测到的车牌区域转换为可读的字符序列。通常,这一过程涉及到字符分割和字符识别两个步骤。通过图像处理技术将车牌区域内的单个字符分离开;然后,对每个字符进行分类,识别出对应的汉字或数字。由于中文车牌的复杂性,模型需要训练以识别包括简体汉字在内的多种字符类型,并且要能应对字符大小不一、扭曲变形的情况。 四、支持12种中文车牌 中国车牌的种类繁多,包括普通民用车牌、军警车牌、武警车牌等,每种都有特定的格式和颜色。本项目覆盖了12种常见的中文车牌类型,确保了在各种应用场景下都能准确识别。这意味着模型需要具备识别不同格式、颜色和字符组合的能力,这是对模型泛化能力的高要求。 五、双层车牌识别 双层车牌在某些特殊车辆上较为常见,如拖车或者挂车。传统的单层车牌识别系统可能无法有效处理这类情况。本项目对此进行了专门优化,可以同时检测并识别上下两层车牌,进一步提升了系统的实用性。 六、应用前景 结合上述技术,我们可以构建一个强大的智能交通管理系统,能够自动识别和记录车辆信息,对于交通违法、车辆追踪等有极大的帮助。此外,该技术还可以应用于无人停车、智能安防等领域,提高效率并减少人工干预。 基于Yolov5的中文车牌检测与识别系统展示了深度学习在解决实际问题中的强大潜力。随着技术的不断进步,我们期待在未来看到更多类似的创新应用,为社会带来更多的便利。

文件下载

资源详情

[{"title":"( 148 个子文件 25.14MB ) Chinese-license-plate-detection-recognition-main.zip","children":[{"title":"box_overlaps.c <span style='color:#111;'> 304.89KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 358B </span>","children":null,"spread":false},{"title":"single_blue.jpg <span style='color:#111;'> 1.81MB </span>","children":null,"spread":false},{"title":"test_1.jpg <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"xue.jpg <span style='color:#111;'> 999.17KB </span>","children":null,"spread":false},{"title":"single_green.jpg <span style='color:#111;'> 903.11KB </span>","children":null,"spread":false},{"title":"hongkang1.jpg <span style='color:#111;'> 570.56KB </span>","children":null,"spread":false},{"title":"police.jpg <span style='color:#111;'> 381.78KB </span>","children":null,"spread":false},{"title":"yolov5n-face.jpg <span style='color:#111;'> 176.85KB </span>","children":null,"spread":false},{"title":"yolov5n-0.5.jpg <span style='color:#111;'> 176.79KB </span>","children":null,"spread":false},{"title":"yolov5m-face.jpg <span style='color:#111;'> 176.64KB </span>","children":null,"spread":false},{"title":"yolov5s-face.jpg <span style='color:#111;'> 176.18KB </span>","children":null,"spread":false},{"title":"yolov5l-face.jpg <span style='color:#111;'> 176.01KB </span>","children":null,"spread":false},{"title":"single_yellow.jpg <span style='color:#111;'> 85.45KB </span>","children":null,"spread":false},{"title":"sample.jpg <span style='color:#111;'> 85.01KB </span>","children":null,"spread":false},{"title":"shi_lin_guan.jpg <span style='color:#111;'> 47.26KB </span>","children":null,"spread":false},{"title":"double_yellow.jpg <span style='color:#111;'> 28.98KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"wider_hard_val.mat <span style='color:#111;'> 414.15KB </span>","children":null,"spread":false},{"title":"wider_medium_val.mat <span style='color:#111;'> 403.05KB </span>","children":null,"spread":false},{"title":"wider_easy_val.mat <span style='color:#111;'> 399.45KB </span>","children":null,"spread":false},{"title":"wider_face_val.mat <span style='color:#111;'> 388.45KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"readme_CN.md <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"box_overlaps.o <span style='color:#111;'> 364.05KB </span>","children":null,"spread":false},{"title":"box_overlaps.o <span style='color:#111;'> 332.05KB </span>","children":null,"spread":false},{"title":"Quicker_20220930_180856.png <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false},{"title":"Quicker_20220930_180919.png <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"weixian.png <span style='color:#111;'> 959.73KB </span>","children":null,"spread":false},{"title":"tmp8F1F.png <span style='color:#111;'> 931.81KB </span>","children":null,"spread":false},{"title":"tmpA5E3.png <span style='color:#111;'> 513.32KB </span>","children":null,"spread":false},{"title":"moto.png <span style='color:#111;'> 400.49KB </span>","children":null,"spread":false},{"title":"Quicker_20220930_181044.png <span style='color:#111;'> 328.08KB </span>","children":null,"spread":false},{"title":"Quicker_20220930_180938.png <span style='color:#111;'> 241.23KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 26.34KB </span>","children":null,"spread":false},{"title":"105384078.png <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false},{"title":"plate_detect.pt <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"plate_rec_color.pth <span style='color:#111;'> 732.86KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 40.64KB </span>","children":null,"spread":false},{"title":"face_datasets.py <span style='color:#111;'> 38.45KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 30.75KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 26.19KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 18.51KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 16.90KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 16.78KB </span>","children":null,"spread":false},{"title":"detect_plate.py <span style='color:#111;'> 16.32KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 15.99KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 15.89KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 13.07KB </span>","children":null,"spread":false},{"title":"openvino_infer.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 11.67KB </span>","children":null,"spread":false},{"title":"onnx_infer.py <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"detect_demo.py <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false},{"title":"plateNet.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false},{"title":"test_widerface.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"ccpd_process.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"train2yolo.py <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false},{"title":"retinaface2yolo.py <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"json2yolo.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"google_utils.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"trt_model.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"plate_rec.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"val2yolo.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"val2yolo_for_test.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"speed.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"infer_utils.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"cv_puttext.py <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"double_plate_split_merge.py <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 328B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets.cpython-37.pyc <span style='color:#111;'> 30.50KB </span>","children":null,"spread":false},{"title":"datasets.cpython-38.pyc <span style='color:#111;'> 30.37KB </span>","children":null,"spread":false},{"title":"face_datasets.cpython-38.pyc <span style='color:#111;'> 26.43KB </span>","children":null,"spread":false},{"title":"general.cpython-37.pyc <span style='color:#111;'> 19.45KB </span>","children":null,"spread":false},{"title":"general.cpython-38.pyc <span style='color:#111;'> 19.43KB </span>","children":null,"spread":false},{"title":"common.cpython-37.pyc <span style='color:#111;'> 19.15KB </span>","children":null,"spread":false},{"title":"common.cpython-38.pyc <span style='color:#111;'> 18.57KB </span>","children":null,"spread":false},{"title":"plots.cpython-37.pyc <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false},{"title":"plots.cpython-38.pyc <span style='color:#111;'> 14.87KB </span>","children":null,"spread":false},{"title":"yolo.cpython-38.pyc <span style='color:#111;'> 12.49KB </span>","children":null,"spread":false},{"title":"yolo.cpython-37.pyc <span style='color:#111;'> 12.44KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-38.pyc <span style='color:#111;'> 10.77KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-37.pyc <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明