凸优化 Convex Optimization(英文原版) by Stephen Boyd Lieven Vandenberghe

上传者: u011248149 | 上传时间: 2019-12-21 21:21:55 | 文件大小: 5.74MB | 文件类型: pdf
英文原版,英文好的可以看一下 良好的理论分析特性,高效的实际可计算性和强大的建模能力是大家选择凸建模的原因。注意,我这里说的是凸建模!科学研究的第一步是对实际问题抽象近似,建模成数学问题,这里有巨大的选择自由度!虽然非凸建模具有最强的表达能力,也最省事,代价却是理论上难以分析和实际中无法可靠计算!近十年来火的一塌糊涂的压缩感知,稀疏表示和低秩恢复都是由凸建模带动起来的!研究者们通过分析凸问题的性质来解释和理解真实世界的机理!要注意,很多这样的问题几十年前就已经有非凸的表达形式了,只有用凸建模才焕然一新!更进一步,通过对凸建模的深入理解,大家对具体的非凸问题,注意不是所有,开始利用特殊的结构特点做分析,得出了一些很深刻的结果,比如神经网络收敛到局部最优解,而不是平稳点,随机算法有助于逃离鞍点。但是,非凸分析几乎都是case by case,没有统一有效的手段,这与凸分析差别甚大。从这个角度来说,凸建模和凸优化是研究实际问题的首选! 作者:知乎用户 链接:https://www.zhihu.com/question/24641575/answer/136736625 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

文件下载

评论信息

  • funny※ :
    还不错.....
    2020-09-22

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明