[{"title":"( 16 个子文件 155KB ) 机器学习与算法源代码3: 线性回归模型.zip","children":[{"title":"机器学习与算法源代码3: 线性回归模型","children":[{"title":"源代码汇总_Jupyter Notebook格式(推荐)","children":[{"title":"汽车制造行业收入表.xlsx <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"客户价值数据表.xlsx <span style='color:#111;'> 12.49KB </span>","children":null,"spread":false},{"title":"金融行业收入表.xlsx <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"3.2 线性回归模型评估.ipynb <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"3.3 多元线性回归.ipynb <span style='color:#111;'> 13.67KB </span>","children":null,"spread":false},{"title":"3.1 一元线性回归.ipynb <span style='color:#111;'> 65.27KB </span>","children":null,"spread":false},{"title":"IT行业收入表.xlsx <span style='color:#111;'> 11.59KB </span>","children":null,"spread":false},{"title":"餐饮服务行业收入表.xlsx <span style='color:#111;'> 11.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"源代码汇总_PyCharm格式","children":[{"title":"汽车制造行业收入表.xlsx <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"3.3 多元线性回归.py <span style='color:#111;'> 709B </span>","children":null,"spread":false},{"title":"客户价值数据表.xlsx <span style='color:#111;'> 12.49KB </span>","children":null,"spread":false},{"title":"金融行业收入表.xlsx <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"3.2 线性回归模型评估.py <span style='color:#111;'> 898B </span>","children":null,"spread":false},{"title":"3.1 一元线性回归.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"IT行业收入表.xlsx <span style='color:#111;'> 11.59KB </span>","children":null,"spread":false},{"title":"餐饮服务行业收入表.xlsx <span style='color:#111;'> 11.70KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]