深度学习在化学信息学中的应用

上传者: syp_net | 上传时间: 2021-08-28 09:14:51 | 文件大小: 1.47MB | 文件类型: PDF
深度学习在计算机视觉、语音识别和自然语言处理三大领域中取得了巨大的成功,带动了人工智能的快速 发展。将深度学习的关键技术应用于化学信息学,能够加快实现化学信息处理的人工智能化。化合物结 构与性质的定量关系研究是化学信息学的主要任务之一,着重介绍各类深度学习框架(深层神经网络、 卷积神经网络、循环或递归神经网络)应用于化合物定量构效关系模型的研究进展,并针对深度学习在 化学信息学中的应用进行了展望。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明