[{"title":"( 42 个子文件 11.34MB ) 线性代数_同济大学配套课件PPT","children":[{"title":"线性代数_同济大学","children":[{"title":"{11}--第十一周对称阵的对角化、二次型及其标准型","children":[{"title":"{2}--11.2二次型及其标准形","children":[{"title":"(11.2.1)--11.2二次型及其标准形.pdf <span style='color:#111;'> 444.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--11.3用配方法化二次型为标准形","children":[{"title":"(11.3.1)--11.3用配方法化二次型为标准形.pdf <span style='color:#111;'> 293.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--11.1对称矩阵的对角化","children":[{"title":"(11.1.1)--11.1对称矩阵的对角化.pdf <span style='color:#111;'> 322.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{4}--第四周逆矩阵","children":[{"title":"{1}--4.1逆矩阵(1)","children":[{"title":"(4.1.1)--4.1逆矩阵(1).pdf <span style='color:#111;'> 239.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--4.3克拉默法则","children":[{"title":"(4.3.1)--4.3克拉默法则.pdf <span style='color:#111;'> 220.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--4.2逆矩阵(2)","children":[{"title":"(4.2.1)--4.2逆矩阵(2).pdf <span style='color:#111;'> 211.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{2}--第二周行列式(二)","children":[{"title":"{4}--2.4范德蒙德行列式","children":[{"title":"(2.4.1)--2.4范德蒙德行列式.pdf <span style='color:#111;'> 158.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--2.2行列式的性质(2)","children":[{"title":"(2.2.1)--2.2行列式的性质(2).pdf <span style='color:#111;'> 394.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--2.3行列式按行(列)展开","children":[{"title":"(2.3.1)--2.2行列式按行(列)展开.pdf <span style='color:#111;'> 291.48KB </span>","children":null,"spread":false},{"title":"(2.3.2)--2.2范德蒙行列式.pdf <span style='color:#111;'> 245.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--2.1行列式的性质(1)","children":[{"title":"(2.1.1)--2.1行列式的性质(1).pdf <span style='color:#111;'> 484.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{6}--第六周矩阵的秩及线性方程组的解","children":[{"title":"{2}--6.2线性方程组的解","children":[{"title":"(6.2.1)--6.2线性方程组的解.pdf <span style='color:#111;'> 423.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--6.1矩阵的秩","children":[{"title":"(6.1.1)--6.1矩阵的秩.pdf <span style='color:#111;'> 490.99KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{13}--第十三周线性空间","children":[{"title":"{2}--13.2基变换与坐标变换","children":[{"title":"(13.2.1)--13.2基变换与坐标变换.pdf <span style='color:#111;'> 325.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--13.1维数、基与坐标","children":[{"title":"(13.1.1)--13.1维数、基与坐标.pdf <span style='color:#111;'> 350.27KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{8}--第八周向量组的秩与线性方程组解的结构","children":[{"title":"{1}--8.1向量组的秩","children":[{"title":"(8.1.1)--8.1向量组的秩.pdf <span style='color:#111;'> 305.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--8.2线性方程组的解的结构","children":[{"title":"(8.2.1)--8.2线性方程组的解的结构.pdf <span style='color:#111;'> 281.68KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{3}--第三周矩阵及其计算","children":[{"title":"{2}--3.2矩阵的运算(1)","children":[{"title":"(3.2.1)--3.2矩阵的运算(1).pdf <span style='color:#111;'> 282.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--3.3矩阵的运算(2)","children":[{"title":"(3.3.1)--3.3矩阵的运算(2).pdf <span style='color:#111;'> 266.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--3.1线性方程组与矩阵","children":[{"title":"(3.1.1)--3.1线性方程组与矩阵.pdf <span style='color:#111;'> 299.75KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{9}--第九周向量空间、向量的长度、内积与正交性","children":[{"title":"{2}--9.2向量的内积、长度及正交性(1)","children":[{"title":"(9.2.1)--9.2向量的内积、长度及正交性(1).pdf <span style='color:#111;'> 388.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"{1}--9.1向量空间","children":[{"title":"(9.1.1)--9.1向量空间.pdf <span style='color:#111;'> 527.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--9.3向量的内积、长度及正交性(2)","children":[{"title":"(9.3.1)--9.3向量的内积、长度及正交性(2).pdf <span style='color:#111;'> 304.48KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{12}--第十二周正定二次型、线性空间","children":[{"title":"{1}--12.1正定二次型","children":[{"title":"(12.1.1)--12.1正定二次型.pdf <span style='color:#111;'> 303.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--12.3线性空间的定义与性质(2)","children":[{"title":"(12.3.1)--12.3线性空间的定义与性质(2).pdf <span style='color:#111;'> 190.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--12.2线性空间的定义与性质(1)","children":[{"title":"(12.2.1)--12.2线性空间的定义与性质(1).pdf <span style='color:#111;'> 382.39KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"{10}--第十周线性变换","children":[{"title":"{1}--10.1方阵的特征值与特征向量(1)","children":[{"title":"(10.1.1)--10.1方阵的特征值与特征向量(1).pdf <span style='color:#111;'> 403.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"{4}--10.4相似矩阵(2)","children":[{"title":"(10.4.1)--10.4相似矩阵(2).pdf <span style='color:#111;'> 333.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--10.2方阵的特征值与特征向量(2)","children":[{"title":"(10.2.1)--10.2方阵的特征值与特征向量(2).pdf <span style='color:#111;'> 398.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"{3}--10.3相似矩阵(1)","children":[{"title":"(10.3.1)--10.3相似矩阵(1).pdf <span style='color:#111;'> 392.35KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"{5}--第五周矩阵的分块及矩阵的初等变换","children":[{"title":"{3}--5.3矩阵的初等变换(1)","children":[{"title":"(5.3.1)--5.3矩阵的初等变换(1).pdf <span style='color:#111;'> 378.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"{4}--5.4矩阵的初等变换(2)","children":[{"title":"(5.4.1)--5.4矩阵的初等变换(2).pdf <span style='color:#111;'> 323.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--5.2矩阵分块法(2)","children":[{"title":"(5.2.1)--5.2矩阵分块法(2).pdf <span style='color:#111;'> 207.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"{1}--5.1矩阵分块法(1)","children":[{"title":"(5.1.1)--5.1矩阵分块法(1).pdf <span style='color:#111;'> 247.52KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"{14}--第十四周线性变换及其矩阵表示","children":[{"title":"{1}--14.1线性变换","children":[{"title":"(14.1.1)--14.1线性变换.pdf <span style='color:#111;'> 358.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"{2}--14.2线性变换的矩阵表示","children":[{"title":"(14.2.1)--14.2线性变换的矩阵表示.pdf <span style='color:#111;'> 394.48KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"{1}--第一周行列式(一)","children":[{"title":"{3}--1.2全排列和对换","children":[{"title":"(1.3.1)--1.2全排列和对换.pdf <span style='color:#111;'> 280.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"{4}--1.3n阶行列式的定义","children":[{"title":"(1.4.1)--1.3n阶行列式的定义.pdf <span style='color:#111;'> 343.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"{1}--1.0课程简介","children":[{"title":"(1.1.1)--1.0课程简介.pdf <span style='color:#111;'> 346.85KB </span>","children":null,"spread":false}],"spread":false},{"title":"{2}--1.1二阶与三阶行列式","children":[{"title":"(1.2.1)--1.1二阶与三阶行列式.pdf <span style='color:#111;'> 357.30KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"{7}--第七周向量组及其线性相关性","children":[{"title":"{1}--7.1向量组及其线性组合","children":[{"title":"(7.1.1)--7.1向量组及其线性组合.pdf <span style='color:#111;'> 347.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"{2}--7.2向量组的线性相关性","children":[{"title":"(7.2.1)--7.2向量组的线性相关性.pdf <span style='color:#111;'> 335.27KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]