离散数学部分概念和公式总结(考试专用)

上传者: smile_828 | 上传时间: 2023-01-04 23:38:02 | 文件大小: 111KB | 文件类型: DOC
有限图:若V, E是有限集,则称G为有限图。 n阶图:若| V |=n,称G为n阶图。 零图:若| E |=0,称G为零图,当| V |=1时,称G为平凡图。 基图:将有向图变为无向图得到的新图,称为有向图的基图。 图的同构:在用图形表示图时,由于顶点的位置不同,边的形状不同,同一个事物之间的关系可以用不同的图表示,这样的图称为图同构。 带权图:在处理有关图的实际问题时,往往有值的存在,一般这个值成为权值,带权值的图称为带权图或赋权图。 连通图:若无向图是平凡图,或图中任意两个顶点都是连通的,则称G是连通图。否则称为非连通图。设D是一个有向图,如果D的基图是连通图,则称D是弱连通图,若D中任意两个顶点至少一个可达另一个,则称D是单向连通图。若D中任意两个顶点是相互可达的,则称D是强连通图。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明