异质信息网络相似性度量的并行化算法研究与实现_胡嘉伟

上传者: sljjyy | 上传时间: 2022-09-21 18:07:15 | 文件大小: 4.87MB | 文件类型: CAJ
近年来,基于异质信息网络的研究受到国内外广泛的关注,很多研究工作(如聚类、分类、推荐等)都是在异质信息网络上开展的。异质信息网络是一种包含不同类型节点和边的网络,它具有更加复杂的网络结构和更加丰富的语义信息,可以更全面地表示系统的组成对象和他们之间的关系。在异质信息网络中,度量节点间的相似性是开展聚类、推荐等工作的基础。目前,国内外已提出许多相似性度量方法来解决异质信息网络节点相似性度量的问题,HeteSim算法就是其中一种代表性方法。HeteSim是一种基于双向随机游走的度量方法,目前HeteSim相似度计算均采用单节点计算模式,然而随着信息网络的急剧膨胀,传统的单节点计算模式已无法满足HeteSim快速计算的需求,开发在集群上运行的HeteSim并行化算法成为当务之急。本文基于分布式计算框架Spark,研究并实现了异质信息网络相似性度量方法HeteSim的并行化算法。首先,本文提出基于矩阵乘法的HeteSim并行化算法。HeteSim并行化的核心是矩阵乘法的并行化,本文针对传统矩阵乘法并行化算法内存消耗大,网络开销大,执行时间长的缺点,提出改进算法,并基于改进算法,实现了基于矩阵乘

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明