[{"title":"( 51 个子文件 29.4MB ) 吴恩达传统机器学习作业代码(python jupyter):线性回归、逻辑回归、神经网络、SVM、Kmeans决策树和自动调参数","children":[{"title":"Coursera-ML-AndrewNg-Exercises-master","children":[{"title":"01-linear-regression","children":[{"title":"ex1data1.txt <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"linear_regreesion_v1.ipynb <span style='color:#111;'> 139.09KB </span>","children":null,"spread":false},{"title":"ex1.pdf <span style='color:#111;'> 478.45KB </span>","children":null,"spread":false},{"title":"ex1data2.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false}],"spread":true},{"title":"03-neural-network","children":[{"title":"ex3.pdf <span style='color:#111;'> 286.82KB </span>","children":null,"spread":false},{"title":"ex3data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"neural_network_v1.ipynb <span style='color:#111;'> 86.63KB </span>","children":null,"spread":false},{"title":"ex3weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"04-NN-back-propagation","children":[{"title":"NN_back_propagation_v1.ipynb <span style='color:#111;'> 17.51KB </span>","children":null,"spread":false},{"title":"ex4.pdf <span style='color:#111;'> 348.33KB </span>","children":null,"spread":false},{"title":"ex4weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"ex4data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"07-kmeans-and-PCA","children":[{"title":"data","children":[{"title":"ex7data1.mat <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"ex7faces.mat <span style='color:#111;'> 10.52MB </span>","children":null,"spread":false},{"title":"ex7data2.mat <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"bird_small.mat <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"bird_small-checkpoint.png <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"bird_small.png <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"kmeans_v1.ipynb <span style='color:#111;'> 277.41KB </span>","children":null,"spread":false},{"title":"pca_v1.ipynb <span style='color:#111;'> 47.73KB </span>","children":null,"spread":false},{"title":"ex7.pdf <span style='color:#111;'> 699.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"08-anomaly-detection-and-recommendation","children":[{"title":"data","children":[{"title":"ex8_movies.mat <span style='color:#111;'> 218.16KB </span>","children":null,"spread":false},{"title":"movie_ids.txt <span style='color:#111;'> 47.31KB </span>","children":null,"spread":false},{"title":"ex8_movieParams.mat <span style='color:#111;'> 196.48KB </span>","children":null,"spread":false},{"title":"ex8data2.mat <span style='color:#111;'> 91.29KB </span>","children":null,"spread":false},{"title":"ex8data1.mat <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex8.pdf <span style='color:#111;'> 242.36KB </span>","children":null,"spread":false},{"title":"recommender_system_v1.ipynb <span style='color:#111;'> 111.81KB </span>","children":null,"spread":false},{"title":"anomaly_detection_v1.ipynb <span style='color:#111;'> 32.90KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"05-bias-variance","children":[{"title":"ex5data1.mat <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"ex5.pdf <span style='color:#111;'> 182.97KB </span>","children":null,"spread":false},{"title":"bias_variance_v1.ipynb <span style='color:#111;'> 116.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"02-logistic-regression","children":[{"title":"ex2data2.txt <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"ex2data1.txt <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"ex2.pdf <span style='color:#111;'> 228.18KB </span>","children":null,"spread":false},{"title":"logistic_regreesion_v1.ipynb <span style='color:#111;'> 96.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 247B </span>","children":null,"spread":false},{"title":"06-svm","children":[{"title":"data","children":[{"title":"spamSample2.txt <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"vocab.txt <span style='color:#111;'> 19.77KB </span>","children":null,"spread":false},{"title":"ex6data1.mat <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"ex6data2.mat <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"emailSample2.txt <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"ex6data3.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"spamTest.mat <span style='color:#111;'> 110.08KB </span>","children":null,"spread":false},{"title":"emailSample1.txt <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"spamTrain.mat <span style='color:#111;'> 418.76KB </span>","children":null,"spread":false},{"title":"spamSample1.txt <span style='color:#111;'> 655B </span>","children":null,"spread":false}],"spread":true},{"title":"ex6.pdf <span style='color:#111;'> 327.78KB </span>","children":null,"spread":false},{"title":"svm_v1.ipynb <span style='color:#111;'> 250.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]