上传者: sinat_21706867
|
上传时间: 2022-11-30 13:24:59
|
文件大小: 339KB
|
文件类型: PDF
中文翻译Introduction to Linear Algebra, 5th Edition 9.2节
本节的要点可由一句话表达:当你转置一个向量 z 或一个矩阵 A 时,也要取其复共轭。不要停在 z T
或 AT 。反转所有虚部的符号。从列向量 zj = aj + ibj 开始,其符合标准的行向量 z T 为分量是 aj − ibj
的共轭转置:
这里是转为 z T 的一个原因。实向量长度的平方为 x21 + · · · + x2n 。复向量长度的平方并非 z12 + · · · + zn2 。
用这个错误定义的话,(1, i) 的长度将是 12 + i2 = 0。一个非零向量将有 0 长度——不可接受。其它向
量将有复数长度。我们想要 a2 + b2 而不是 (a + bi)2 ,即绝对值的平方。就是 (a + bi) 乘以 (a − bi)。
2
对于每个分量,我们想使 zj 乘以 z j ,即 |zj | = a2j + b2j 。当 z 的分量乘以乘以 z 的分量时: