基于深度学习(CNN+Yolo+python)的车牌识别系统

上传者: shooter7 | 上传时间: 2023-05-03 13:47:23 | 文件大小: 288.32MB | 文件类型: 7Z
本系统具有友好的用户操作界面,可以对车牌识别进行结果的展示,通过界面对车牌识别进行分析。 基于 CNN+Yolo 的车牌识别是一种先进的计算机视觉技术,它可以自动识别道路上的车辆并记录下车牌信息。该技术结合了深度学习和目标检测算法,具有高准确性和高效性。 在该技术中,CNN 是一种用于图像分析的深度学习算法,它可以对图像进行自动分类和识别。Yolo 是一种目标检测算法,它可以在图像中自动检测出目标并给出其位置和大小。这两种算法的结合使用可以实现高效的车牌识别。 在实现过程中,首先需要对图像进行预处理,包括去噪、图像增强和尺寸归一化等步骤。接着,使用 CNN 算法对图像进行特征提取,并将其与训练数据进行比对,从而识别出车牌的位置和类型。同时,使用 Yolo 算法对车牌进行精确定位和检测,以确保车牌的完整性和准确性。 该技术的应用场景广泛,例如智能交通系统、停车场管理、安防监控等。在未来,随着计算机视觉技术的不断发展和完善,基于 CNN+Yolo 的车牌识别技术将会得到更广泛的应用,为人们的生活带来更多的便利。同时,该技术还可以应用于车牌的伪造和篡改检测,有助于保障交通安全和社会稳定。

文件下载

资源详情

[{"title":"( 215 个子文件 288.32MB ) 基于深度学习(CNN+Yolo+python)的车牌识别系统","children":[{"title":"darknet53.conv.74 <span style='color:#111;'> 154.96MB </span>","children":null,"spread":false},{"title":"yolov3.cfg <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"car.cfg <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"yolov3-tiny.cfg <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"car.data <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"coco.data <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"custom.data <span style='color:#111;'> 99B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"ALPR-master.iml <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"LPRNet_Pytorch-master.iml <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"PyTorch-YOLOv3.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"Vehicle-Car-detection-and-multilabel-classification.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"Pytorch_Retina_License_Plate-master.iml <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"IMG20220428124309.jpg <span style='color:#111;'> 3.34MB </span>","children":null,"spread":false},{"title":"ui.JPG <span style='color:#111;'> 437.86KB </span>","children":null,"spread":false},{"title":"test_3.jpg <span style='color:#111;'> 393.38KB </span>","children":null,"spread":false},{"title":"test_0.jpg <span style='color:#111;'> 366.05KB </span>","children":null,"spread":false},{"title":"test_0.jpg <span style='color:#111;'> 160.50KB </span>","children":null,"spread":false},{"title":"test_0.jpg <span style='color:#111;'> 160.50KB </span>","children":null,"spread":false},{"title":"0.jpg <span style='color:#111;'> 129.83KB </span>","children":null,"spread":false},{"title":"8.JPG <span style='color:#111;'> 75.81KB </span>","children":null,"spread":false},{"title":"car04-04-22-14-16-0-1.jpg <span style='color:#111;'> 74.36KB </span>","children":null,"spread":false},{"title":"car04-04-22-14-57-0-1.jpg <span style='color:#111;'> 61.60KB </span>","children":null,"spread":false},{"title":"car04-04-22-14-51-0-1.jpg <span style='color:#111;'> 61.60KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 61.08KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 57.81KB </span>","children":null,"spread":false},{"title":"0.jpg <span style='color:#111;'> 54.91KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 45.22KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 41.98KB </span>","children":null,"spread":false},{"title":"12.jpg <span style='color:#111;'> 41.48KB </span>","children":null,"spread":false},{"title":"icon1.jpg <span style='color:#111;'> 39.92KB </span>","children":null,"spread":false},{"title":"8.jpg <span style='color:#111;'> 39.43KB </span>","children":null,"spread":false},{"title":"test_1.jpg <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false},{"title":"14.jpg <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false},{"title":"14.jpg <span style='color:#111;'> 36.55KB </span>","children":null,"spread":false},{"title":"11.jpg <span style='color:#111;'> 33.54KB </span>","children":null,"spread":false},{"title":"che2.jpg <span style='color:#111;'> 30.58KB </span>","children":null,"spread":false},{"title":"che3.jpg <span style='color:#111;'> 30.09KB </span>","children":null,"spread":false},{"title":"0.jpg <span style='color:#111;'> 28.32KB </span>","children":null,"spread":false},{"title":"0.jpg <span style='color:#111;'> 23.84KB </span>","children":null,"spread":false},{"title":"13.JPG <span style='color:#111;'> 22.58KB </span>","children":null,"spread":false},{"title":"che.jpg <span style='color:#111;'> 21.69KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 17.43KB </span>","children":null,"spread":false},{"title":"4.JPG <span style='color:#111;'> 12.55KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"Q67876.jpg <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"test.jpg <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"FSQ818.jpg <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"Q67876.jpg <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"VQV767.jpg <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"lastfailed <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"vid_te.mp4 <span style='color:#111;'> 6.26MB </span>","children":null,"spread":false},{"title":"coco.names <span style='color:#111;'> 625B </span>","children":null,"spread":false},{"title":"car.names <span style='color:#111;'> 4B </span>","children":null,"spread":false},{"title":"epoch_39.pth <span style='color:#111;'> 61.69MB </span>","children":null,"spread":false},{"title":"Final_LPRNet_model.pth <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"mobilenet0.25_epoch_20_ccpd.pth <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"Clipper.py <span style='color:#111;'> 30.64KB </span>","children":null,"spread":false},{"title":"CamShow.py <span style='color:#111;'> 24.32KB </span>","children":null,"spread":false},{"title":"train_vehicle_multilabel.py <span style='color:#111;'> 24.04KB </span>","children":null,"spread":false},{"title":"my_alpr.py <span style='color:#111;'> 23.48KB </span>","children":null,"spread":false},{"title":"darknet.py <span style='color:#111;'> 16.02KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 14.64KB </span>","children":null,"spread":false},{"title":"mobile_net_v3.py <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"box_utils.py <span style='color:#111;'> 13.03KB </span>","children":null,"spread":false},{"title":"VehicleDC.py <span style='color:#111;'> 12.97KB </span>","children":null,"spread":false},{"title":"darknet_util.py <span style='color:#111;'> 12.79KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 11.51KB </span>","children":null,"spread":false},{"title":"train_LPRNet.py <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false},{"title":"pll_detect.py <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"mobilenetv3.py <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false},{"title":"inference_LPR.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"car_detect.py <span style='color:#111;'> 7.36KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"data_augment.py <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"multibox_loss.py <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"retina.py <span style='color:#111;'> 5.18KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"net.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"wider_lp.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"open_pr_det.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"LPRNet.py <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"bbox.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"CCPDOUT.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"load_data.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"parse_config.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明