NIST SP800-57pt2r1.pdf

上传者: samsho2 | 上传时间: 2025-06-05 14:37:46 | 文件大小: 1.14MB | 文件类型: PDF
Cryptographic mechanisms are often used to protect the integrity and confidentiality of data that is sensitive, has a high value, or is vulnerable to unauthorized disclosure or undetected modification during transmission or while in storage. A cryptographic mechanism relies upon two basic components: an algorithm (or cryptographic methodology) and a variable cryptographic key. The algorithm and key are used together to apply cryptographic protection to data (e.g., to encrypt the data or to generate a digital signature) and to remove or check the protection (e.g., to decrypt the encrypted data or to verify a digital signature). This is analogous to a physical safe that can be opened only with the correct combination.
Two types of cryptographic algorithms are in common use today: symmetric key algorithms and asymmetric key algorithms. Symmetric key algorithms (sometimes called secret key algorithms) use a single key to both apply cryptographic protection and to remove or check the protection. Asymmetric key algorithms (often called public key algorithms) use a pair of keys (i.e., a key pair): a public key and a private key that are mathematically related to each other. In the case of symmetric key algorithms, the single key must be kept secret from everyone and everything not specifically authorized to access the information being protected. In asymmetric key cryptography, only one key in the key pair, the private key, must be kept secret; the other key can be made public. Symmetric key cryptography is most often used to protect the confidentiality of information or to authenticate the integrity of that information. Asymmetric key cryptography is commonly used to protect the integrity and authenticity of information and to establish symmetric keys.
Given differences in the nature of symmetric and asymmetric key cryptography and of the requirements of different security applications of cryptography, specific key management requirements and methods necessarily vary from application to application. Regardless of the algorithm or application, if cryptography is to deliver confidentiality, integrity, or authenticity, users and systems need to have assurance that the key is authentic, that it belongs to the entity with whom or which it is asserted to be associated, and that it has not been accessed by an unauthorized third party. SP 800-57, Recommendation for Key Management (hereafter referred to as SP 800-57 or the Recommendation), provides guidelines and best practices for achieving this necessary assurance.
SP 800-57 consists of three parts. This publication is Part 2 of the Recommendation (i.e., SP 800-57 Part 2 – Best Practices for Key Management Organizations) and is intended primarily to address the needs of U.S. government system owners and managers who are setting up or acquiring cryptographic key management capabilities. Parts 1 and 3 of SP 800-57 focus on cryptographic key management mechanisms. SP 800-57 Part 1, General, (hereafter referred to as Part 1) contains basic key management guidance intended to advise users, developers and system managers; and SP 800-57 Part 3, Application-Specific Key Management Guidance, (hereafter referred to as Part 3) is intended to address specific key management issues associated with currently available implementations.
SP 800-57 has been developed by and for the U.S. Federal Government. Non-governmental organizations may voluntarily choose to follow the practices provided herein.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明