Continuous Control with Deep Reinforcement Learning持续控制与深度强化学习

上传者: rzss8 | 上传时间: 2021-12-29 13:02:26 | 文件大小: 668KB | 文件类型: PDF
我们将深度Q-Learning成功背后的理念与持续的 动作域。我们提出了一种基于确定性模型的无模型算法 可以在连续动作空间上操作的策略梯度。使用 同样的学习算法,网络结构和超参数,我们的算法 稳健地解决20多个模拟物理任务,包括经典 如手推车摆动、灵巧操作、腿部运动等问题 还有开车。我们的算法能够找到性能具有竞争力的策略 与那些发现的规划算法完全访问的动态 域及其衍生物的。我们进一步证明,对于许多 任务算法可以“端到端”学习策略:直接从原始像素输入。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明