curvelet.rar

上传者: r539858286 | 上传时间: 2021-04-23 10:42:18 | 文件大小: 220KB | 文件类型: RAR
根据曲波变换Curvelet,用MATLAB实现对二维图像信号的分解和重建,计算图像熵和信噪比。内涵Curvelet工具包。

文件下载

资源详情

[{"title":"( 63 个子文件 220KB ) curvelet.rar","children":[{"title":"curvelet","children":[{"title":"SeparateAngles.m <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"Inv_DetailCurveCoeff.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"WENStoClockwise.m <span style='color:#111;'> 810B </span>","children":null,"spread":false},{"title":"fdct_usfft_path.m <span style='color:#111;'> 985B </span>","children":null,"spread":false},{"title":"MakeFourierDiagonal_2D.m <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"USFFT.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"IteratedSineWindow.m <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"fdct_usfft_demo_recon.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"DetailCurveCoeff.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"SqueezeAngularFT.m <span style='color:#111;'> 867B </span>","children":null,"spread":false},{"title":"Inv_GUSFT_CG.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"Inv_AtA_CG.m <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"GUSFT_Toeplitz.m <span style='color:#111;'> 796B </span>","children":null,"spread":false},{"title":"SetScaleToZero.m <span style='color:#111;'> 696B </span>","children":null,"spread":false},{"title":"IteratedSine.m <span style='color:#111;'> 582B </span>","children":null,"spread":false},{"title":"CoarseCurveCoeff.m <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"ifft_mid0.m <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"fft_mid0.m <span style='color:#111;'> 474B </span>","children":null,"spread":false},{"title":"fdct_usfft_c2r.m <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"fdct_usfft_demo_disp.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"Adj_SqueezeAngularFT.m <span style='color:#111;'> 639B </span>","children":null,"spread":false},{"title":"SizeCoeffArray.m <span style='color:#111;'> 701B </span>","children":null,"spread":false},{"title":"fft2_mid0.m <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"fdct_usfft_dispcoef.m <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"DetailMeyerWindow.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"ClockwisetoWENS.m <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"MakeSineWindow.m <span style='color:#111;'> 498B </span>","children":null,"spread":false},{"title":"WindowMeyer.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"Inv_USFT_Toeplitz.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"MakeFourierDiagonal.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"fdct_usfft_pos2idx.m <span style='color:#111;'> 874B </span>","children":null,"spread":false},{"title":"fdct_usfft_r2c.m <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"Adj_Evaluate_FT.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"fdct_usfft_demo_denoise.m <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"SeparateScales.m <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"MeyerPartition.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"ifdct_usfft.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Adj_DetailCurveCoeff.m <span style='color:#111;'> 915B </span>","children":null,"spread":false},{"title":"fdct_usfft_param.m <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"Evaluate_FT.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"GUSFT_simple.m <span style='color:#111;'> 816B </span>","children":null,"spread":false},{"title":"AtA.m <span style='color:#111;'> 538B </span>","children":null,"spread":false},{"title":"Adj_USFT_simple.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"Adj_USFFT.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"Adj_SeparateScales.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"curvelet.m <span style='color:#111;'> 1023B </span>","children":null,"spread":false},{"title":"standard_lena.bmp <span style='color:#111;'> 257.05KB </span>","children":null,"spread":false},{"title":"reverse.m <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"InvMeyerPartition.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"fdct_usfft.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"FineCurveCoeff.m <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"ifft2_mid0.m <span style='color:#111;'> 300B </span>","children":null,"spread":false},{"title":"fdct_usfft_demo_basic.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"Inv_FineCurveCoeff.m <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"Inv_CoarseCurveCoeff.m <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"FineMeyerWindow.m <span style='color:#111;'> 996B </span>","children":null,"spread":false},{"title":"Inv_SeparateAngles.m <span style='color:#111;'> 1020B </span>","children":null,"spread":false},{"title":"afdct_usfft.m <span style='color:#111;'> 952B </span>","children":null,"spread":false},{"title":"Adj_SeparateAngles.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"USFT_simple.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"AtA_Toeplitz.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"CoarseMeyerWindow.m <span style='color:#111;'> 1007B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明