cora数据集以及deepwalk Word2vec源代码获取图嵌入后实现分类任务,以及小组演示PPT

上传者: 61369552 | 上传时间: 2025-05-09 16:33:11 | 文件大小: 3.37MB | 文件类型: ZIP
在IT领域,图嵌入(Graph Embedding)是一种将图中的节点转化为低维向量表示的技术,这在处理复杂网络结构的问题中具有广泛的应用。Cora数据集是学术界常用的图数据集,常用于节点分类任务,而DeepWalk与Word2Vec则是实现图嵌入的两种重要方法。 Cora数据集是一个引文网络,包含2708篇计算机科学领域的论文,这些论文被分为七个类别。每篇论文可以通过引用关系与其他论文相连,形成一个复杂的图结构。节点代表论文,边表示引用关系。对Cora数据集进行分类任务,旨在预测一篇论文的类别,这有助于理解论文的主题和领域,对于推荐系统和学术搜索引擎优化具有重要意义。 DeepWalk是受Word2Vec启发的一种图嵌入方法,由Perozzi等人在2014年提出。Word2Vec是一种用于自然语言处理的工具,它通过上下文窗口来学习词向量,捕获词汇之间的语义关系。DeepWalk同样采用了随机游走的思想,但应用在图结构上。它通过短随机路径采样生成节点序列,然后使用 Skip-gram 模型学习节点的向量表示。这些向量保留了图中的结构信息,可以用于后续的分类、聚类等任务。 源代码通常包含了实现DeepWalk的具体步骤,可能包括以下部分: 1. 数据预处理:读取图数据,如Cora数据集,构建邻接矩阵或边列表。 2. 随机游走:根据图结构生成一系列的节点序列。 3. Skip-gram模型训练:使用Word2Vec的训练方法,更新每个节点的向量表示。 4. 图嵌入:得到的节点向量可作为图的嵌入结果。 5. 应用:将嵌入结果用于分类任务,如利用机器学习模型(如SVM、随机森林等)进行训练和预测。 "NetworkEmbedding-master"可能是包含其他图嵌入算法的项目库,除了DeepWalk,可能还包括其他如Node2Vec、LINE等方法。这些算法各有特点,比如Node2Vec通过调整两个参数(p和q)控制随机游走的返回概率和深度优先搜索的概率,以探索不同的邻居结构。 小组演示PPT可能涵盖了这些技术的原理、实现过程、性能评估以及实际应用案例,帮助团队成员和听众更好地理解和掌握图嵌入技术。通过这样的分享,可以促进团队内部的知识交流和技能提升,对于解决实际问题有着积极的作用。 这个压缩包资源提供了学习和实践图嵌入技术,特别是DeepWalk和Word2Vec的机会,结合Cora数据集,可以深入理解图数据的处理和节点分类任务的执行过程。对于软件/插件开发者、数据科学家和机器学习工程师来说,这些都是宝贵的学习材料。

文件下载

资源详情

[{"title":"( 58 个子文件 3.37MB ) cora数据集以及deepwalk Word2vec源代码获取图嵌入后实现分类任务,以及小组演示PPT","children":[{"title":"deepwalk源代码","children":[{"title":"deepwalk","children":[{"title":"main.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"model.cpython-38.pyc <span style='color:#111;'> 915B </span>","children":null,"spread":false},{"title":"graph.cpython-38.pyc <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"cora","children":[{"title":"labels.npz <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"cora.cites <span style='color:#111;'> 68.29KB </span>","children":null,"spread":false},{"title":"data_utils_cora.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"cora.content <span style='color:#111;'> 7.46MB </span>","children":null,"spread":false},{"title":"network.npz <span style='color:#111;'> 23.94KB </span>","children":null,"spread":false},{"title":"cora.algo.embeddings <span style='color:#111;'> 3.75MB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"deepwalkzhan.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 283B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":true},{"title":"evaluate_cora.py <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"deepwalk算法及实现15.43.pptx <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"NetworkEmbedding-master","children":[{"title":"NetworkEmbedding-master","children":[{"title":"deepwalk","children":[{"title":"main.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"line","children":[{"title":"main.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 5.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"cora","children":[{"title":".idea","children":[{"title":"cora.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 267B </span>","children":null,"spread":false}],"spread":true},{"title":"data_utils_cora.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"aane","children":[{"title":"main.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"aane.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"model.cpython-38.pyc <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"AANE.cpython-36.pyc <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":"NetworkEmbedding-master.iml <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":true},{"title":"node2vec","children":[{"title":"main.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"evaluate_cora.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"evaluate_tencent.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 81B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明