模式识别实验:基于 Fisher 准则线性分类器设计

上传者: 56870342 | 上传时间: 2022-12-07 12:27:43 | 文件大小: 3KB | 文件类型: ZIP
已知两类分类问题,类别用ω1 和ω2 表示,每类的先验概率已知, P w(1)0.6,Pw(2)=0.4。这里样本向量的维数是 3 维。 ω1中数据向量 xx1=[x1, y1, z1]T,其数据点的坐标对应如下。 x1 = 0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 y1= 2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.29

文件下载

资源详情

[{"title":"( 2 个子文件 3KB ) 模式识别实验:基于 Fisher 准则线性分类器设计","children":[{"title":"experiment3","children":[{"title":"fisher.m <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"result.mat <span style='color:#111;'> 266B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明