[{"title":"( 49 个子文件 22.4MB ) 深度学习入门:基于python的理论与实现(照着书手动敲的代码).zip","children":[{"title":"content","children":[{"title":"反向传播.ipynb <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"梯度下降法.ipynb <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"neuralnet_mnist.ipynb <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"sample_weight.pkl <span style='color:#111;'> 177.59KB </span>","children":null,"spread":false},{"title":"针对单个数据的损失函数.ipynb <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"读取MNIST数据集.ipynb <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lena.png <span style='color:#111;'> 115.20KB </span>","children":null,"spread":false},{"title":"lena_gray.png <span style='color:#111;'> 41.59KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"mnist.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"mnist.pkl <span style='color:#111;'> 52.40MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"mnist.cpython-36.pyc <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 127B </span>","children":null,"spread":false}],"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"激活函数.ipynb <span style='color:#111;'> 19.45KB </span>","children":null,"spread":false},{"title":"common","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"multi_layer_net_extend.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"gradient.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"functions.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"multi_layer_net.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"functions.cpython-36.pyc <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"gradient.cpython-36.pyc <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"optimizer.py <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"神经网络.ipynb <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"TwoLayerNet.ipynb <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"mini-batch.ipynb <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"mini_batch_损失函数.ipynb <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"多维数组.ipynb <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"neuralnet_mnist-checkpoint.ipynb <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"神经网络-checkpoint.ipynb <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"mini_batch_损失函数-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"梯度下降法-checkpoint.ipynb <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"多维数组-checkpoint.ipynb <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"针对单个数据的损失函数-checkpoint.ipynb <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"感知机-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"mini-batch-checkpoint.ipynb <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"读取MNIST数据集-checkpoint.ipynb <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"反向传播-checkpoint.ipynb <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"TwoLayerNet-checkpoint.ipynb <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"激活函数-checkpoint.ipynb <span style='color:#111;'> 19.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"感知机.ipynb <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]