TransUnet复现,完整代码(附实现说明)

上传者: 45806961 | 上传时间: 2025-04-05 20:31:25 | 文件大小: 751.19MB | 文件类型: ZIP
"TransUnet复现,完整代码(附实现说明)" 提供的是一个关于TransUnet模型的实现过程,这个模型是计算机视觉领域的一个重要应用,特别在医学图像分割任务中表现突出。TransUnet结合了Transformer的全局注意力机制和U-Net的卷积网络结构,旨在提高图像分割的精度。 "TransUnet复习,完整代码(附实现说明)" 暗示这是一个学习资源,帮助开发者理解和复现TransUnet模型。通过提供的代码和文档,开发者可以深入理解TransUnet的工作原理,并将其应用于自己的项目中。 "软件/插件" 表明这是一套软件工具,可能包括脚本、库或插件,用于搭建和训练TransUnet模型。 【压缩包子文件的文件名称列表】中的各个文件具有以下作用: 1. **LICENSE**: 这通常包含项目的许可协议,规定了用户可以如何使用、修改和分发代码。 2. **README.md**: 这是一个Markdown格式的文件,通常包含了项目简介、安装指南、使用方法等关键信息,对于理解整个项目非常有帮助。 3. **test.py**: 这可能是测试代码,用于验证模型的功能和性能,确保代码正确运行。 4. **utils.py**: 通常包含辅助函数和类,用于支持主要代码模块,如数据预处理、模型保存加载等。 5. **train.py**: 这是模型训练的主程序,可能包含了数据加载、模型构建、训练循环和损失计算等核心步骤。 6. **trainer.py**: 可能定义了一个训练器类,负责管理模型的训练过程,如优化器、学习率调度、模型检查点等。 7. **To_2d.py** 和 **To_3d.py**: 这两个文件可能涉及图像的维度转换,可能用于将3D图像转换为2D进行处理,或者反之。 8. **show_label_to_color.py**: 可能是用来可视化分割结果的脚本,将分割出的类别标签映射到不同的颜色上,便于观察。 9. **make_list_file.py**: 这个文件可能是用来创建数据列表的,数据列表常用于指示训练和验证数据集的路径,方便批量处理。 通过这些文件,开发者可以了解TransUnet的全貌,包括数据预处理、模型构建、训练流程以及结果可视化。这对于学习和实践深度学习模型,尤其是TransUnet这样的高级模型,是非常宝贵的资源。在实践中,开发者需要根据自身的硬件环境和数据集调整代码,以适应特定的图像分割任务。同时,理解并复现这样的模型也有助于提升对深度学习和计算机视觉的理解。

文件下载

资源详情

[{"title":"( 44 个子文件 751.19MB ) TransUnet复现,完整代码(附实现说明)","children":[{"title":"utils.py <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false},{"title":"predictions","children":null,"spread":false},{"title":"print_img_array.py <span style='color:#111;'> 436B </span>","children":null,"spread":false},{"title":"To_2d.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"ceshi1.py <span style='color:#111;'> 359B </span>","children":null,"spread":false},{"title":"networks","children":[{"title":"vit_seg_modeling.py <span style='color:#111;'> 18.74KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"vit_seg_modeling.cpython-38.pyc <span style='color:#111;'> 14.19KB </span>","children":null,"spread":false},{"title":"vit_seg_modeling_resnet_skip.cpython-38.pyc <span style='color:#111;'> 5.81KB </span>","children":null,"spread":false},{"title":"vit_seg_configs.cpython-38.pyc <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"vit_seg_configs.py <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"vit_seg_modeling_resnet_skip.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"image_array.txt <span style='color:#111;'> 9.77MB </span>","children":null,"spread":false},{"title":"data","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"show_label_to_color.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"说明.txt <span style='color:#111;'> 919B </span>","children":null,"spread":false},{"title":"lists","children":[{"title":"lists_Synapse","children":[{"title":"test_vol.txt <span style='color:#111;'> 616B </span>","children":null,"spread":false},{"title":"all.lst <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":"TransUNet-main.iml <span style='color:#111;'> 563B </span>","children":null,"spread":false},{"title":"other.xml <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 13.59KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 438B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false},{"title":"modules.xml <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 184B </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"dataset_synapse.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"dataset_synapse.cpython-38.pyc <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":false},{"title":"test_log","children":[{"title":"test_log_TU_Synapse512","children":[{"title":"TU_pretrain_R50-ViT-B_16_skip3_bs24_512.txt <span style='color:#111;'> 18.87KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"predata","children":null,"spread":false},{"title":"model","children":[{"title":"vit_checkpoint","children":[{"title":"imagenet21k","children":[{"title":"R50+ViT-B_16预训练模型.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"TU_Synapse512","children":[{"title":"TU_pretrain_R50-ViT-B_16_skip3_epo150_bs2_512","children":[{"title":"epoch_54.pth <span style='color:#111;'> 404.19MB </span>","children":null,"spread":false},{"title":"epoch_49.pth <span style='color:#111;'> 404.19MB </span>","children":null,"spread":false},{"title":"log.txt <span style='color:#111;'> 820.17KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"log-checkpoint.txt <span style='color:#111;'> 625.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"log","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"requirements.txt <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"trainer.cpython-38.pyc <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"utils.cpython-38.pyc <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false}],"spread":false},{"title":"To_3d.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"make_list_file.py <span style='color:#111;'> 779B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明