[{"title":"( 67 个子文件 1.38MB ) 机器学习课后习题.zip","children":[{"title":"机器学习课后习题","children":[{"title":".ipynb_checkpoints","children":[{"title":"ch5_5_BP_algorithm-checkpoint.ipynb <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"MachineLearning-master","children":[{"title":".ipynb_checkpoints","children":[{"title":"ch3_4_comparing_error_rate-checkpoint.ipynb <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"ch4_4_Gini_decision_tree_prune-checkpoint.ipynb <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"ch_8_5_Bagging-checkpoint.ipynb <span style='color:#111;'> 40.49KB </span>","children":null,"spread":false},{"title":"ch3_3_logistic_regression-checkpoint.ipynb <span style='color:#111;'> 41.46KB </span>","children":null,"spread":false},{"title":"ch10_1_knn-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ch5_5_BP_algorithm-checkpoint.ipynb <span style='color:#111;'> 8.50KB </span>","children":null,"spread":false},{"title":"ch4_3_ID3_decision_tree-checkpoint.ipynb <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"ch7_9_BIC_bayesNet-checkpoint.ipynb <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"ch_9_4_k_means-checkpoint.ipynb <span style='color:#111;'> 32.84KB </span>","children":null,"spread":false},{"title":"ch3_5_linear_discriminant_analysis-checkpoint.ipynb <span style='color:#111;'> 40.50KB </span>","children":null,"spread":false},{"title":"ch7_6_AODE-checkpoint.ipynb <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"ch_8_3_AdaBoost-checkpoint.ipynb <span style='color:#111;'> 70.06KB </span>","children":null,"spread":false},{"title":"ch5_6_improved_BP_algorithm-checkpoint.ipynb <span style='color:#111;'> 10.79KB </span>","children":null,"spread":false},{"title":"ch6_2_and_ch6_8-checkpoint.ipynb <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"ch4_5_logistic_regression_tree-checkpoint.ipynb <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"ch7_3_laplacian_bayes-checkpoint.ipynb <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"ch5_7_RBF_net-checkpoint.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false}],"spread":false},{"title":"ch6_2_and_ch6_8.ipynb <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"bp.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"ch7_3_laplacian_bayes.ipynb <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"output","children":[{"title":"BayesNetwork.gv.pdf <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"temp.gv <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"BayesNetwork.gv <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"temp.gv.pdf <span style='color:#111;'> 17.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch5_5_BP_algorithm.ipynb <span style='color:#111;'> 8.50KB </span>","children":null,"spread":false},{"title":"ch3_3_logistic_regression.ipynb <span style='color:#111;'> 41.48KB </span>","children":null,"spread":false},{"title":"ch3_5_linear_discriminant_analysis.ipynb <span style='color:#111;'> 40.50KB </span>","children":null,"spread":false},{"title":"ch4_5_logistic_regression_tree.ipynb <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"ch5_6_improved_BP_algorithm.ipynb <span style='color:#111;'> 10.79KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"other.xml <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 31.33KB </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 344B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"MachineLearning.iml <span style='color:#111;'> 526B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false}],"spread":true},{"title":"BayesNet.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"ch9_4_k_means.ipynb <span style='color:#111;'> 32.84KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"ch8_5_Bagging.ipynb <span style='color:#111;'> 40.49KB </span>","children":null,"spread":false},{"title":"ch3_4_comparing_error_rate.ipynb <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"BayesNet.cpython-35.pyc <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"ch4.cpython-35.pyc <span style='color:#111;'> 10.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"data","children":[{"title":"watermelon_3_0.txt <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"blood.txt <span style='color:#111;'> 12.43KB </span>","children":null,"spread":false},{"title":"table_4_2_watermelon_2_0.csv <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"table_4_1_watermelon_2_0.csv <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"table_9_1_watermelon_4_0.csv <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"table_4_a_watermelon_3_alpha.csv <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"watermelon_3_0_alpha.txt <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"iris.txt <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"table_4_3_watermelon_3_0.csv <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"table_4_3_watermelon_3_0_num.csv <span style='color:#111;'> 567B </span>","children":null,"spread":false}],"spread":false},{"title":"ch10_1_knn.ipynb <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"ch8_3_AdaBoost.ipynb <span style='color:#111;'> 70.06KB </span>","children":null,"spread":false},{"title":"ch4_3_ID3_decision_tree.ipynb <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"ch4_4_Gini_decision_tree_prune.ipynb <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"ch5_7_RBF_net.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"ch7_9_BIC_bayesNet.ipynb <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"out","children":[{"title":"temp2.gv <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"temp1.gv <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"temp1.gv.pdf <span style='color:#111;'> 17.31KB </span>","children":null,"spread":false},{"title":"temp2.gv.pdf <span style='color:#111;'> 17.33KB </span>","children":null,"spread":false}],"spread":false},{"title":"ch7_6_AODE.ipynb <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"ch5_5_BP_algorithm.ipynb <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"pumpkin_book.pdf <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]